Code: 041308

B.Tech. 3rd Semester Exam., 2014

SOLID-STATE PHYSICS AND DEVICES

Time: 3 hours Full Marks: 70

Instructions:

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt. FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- 1. Answer any seven from the following: 2×7=14
 - (a) What are the methods used for epitaxial growth?
 - (b) Define direct and indirect semiconductors.
 - (c) Define the effective mass and express it in terms of (E, k).
 - (d) Define conductivity and mobility.
 - (e) Find the resistivity of intrinsic germanium at 300 K. Given that the intrinsic density of carriers is 2·5×10¹⁹ / m³, μ_e = 0·39 m²/V.s., μ_n = 0·19 m²/V.s.

(1)	What	is	diffusion	length	and	mean	life
	time?						

- (g) Define the varactor diode.
- (h) What is emitter injection efficiency and current transfer ratio?
- (i) What is thermionic emission?
- Define MOSFET and BJT. akubihar.com
- (a) Write short notes on (i) vapour-phase epitaxy and (ii) molecular beam epitaxy.

 $4 \times 2 = 8$

8

6

б

- (h) In a very long p-type Si bar with crosssectional area = $0.5 \, \mathrm{cm}^2$ and N_a = $10^{17} \, \mathrm{cm}^{-3}$, we inject holes such that the steady-state excess hole concentration is $5 \times 10^{16} \, \mathrm{cm}^{-3}$ at x = 0. What is the hole current there? Assume that $\mu_p = 500 \, \mathrm{cm}^2/\mathrm{V.s}$ and $\tau_p = 10^{10} \, \mathrm{sec.}$
- (a) Write short notes on direct and indirect recombination in a semiconductor.
 - (b) What is ion implantation?
- (a) Derive the diffusion equation for steadystate distribution for electron and hole.
 - (b) Derive Einstein relation with respect to both carriers in semiconductor.

(Turn Over) Al

5. (0	What is reverse breakdown? Describe the different reverse breakdown mechanism.	6		(c)	Draw energy band diagram of pnp transistor in common base mode. Discuss why the base of a transistor is	
(t	transition region in terms of contact			, (a)	thin and lightly doped.	4
	potential and doping concentrations on each side of the junctions.	8	0.	(a)	Write short notes on any two of the following:	2=8
6 1	al An alama Di				(i) Solar cell	
6. (a)	An abrupt Si p-n junction has $N_a = 10^{18} \text{ cm}^{-3}$ on one side and $N_d =$			307-	(ii) LED	
	5×10 ¹⁵ cm ⁻³ on the other has a circular				(iii) Laser diode	
	cross-section with a diameter of 10 μ m. Calculate χ_{no} , χ_{po} , Q_t and ξ_0 for this junction at equilibrium (300 K). Sketch	4		(b)	What is silicon controlled rectifier and unijunction rectifier? 3×2	!=6
	$\xi_{\{x\}}$ and charge density.	7	9.	(a)	Write a short note on charge coupled	737
1	 Explain the operating principle of JFET using suitable sketches. 	7		(b)	devices (CCD). What is Schottky barrier diode?	4
7. (0	For an n-channel MOSFET with a gate oxide thickness of 10 nm, $V_T = 0.6$ V and $Z = 25 \mu m$, $L = 1 \mu m$, calculate the			(c)	Define triodes, tetrads and pentodes.	6
	drain current at $V_G = 5V$ and $V_D = 0.1 V$. Also calculate the drain				***	
400	current for $V_D = 7V$. Assume an electron channel mobility of $\mu_n = 200 \text{ cm}^2/\text{V.s.}$	6				
	b) Draw energy band diagram of pnn					
20	transistor in unbiased condition.	4				