
JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

AY 2024-2025

UNIT I FOUNDATIONS OF SOFTWARE TESTING 9

 Why do we test Software?, Software Testing Life Cycle, V-model of Software

Testing, Software Testing Principles ,The Tester‘s Role in a Software

Development Organization – Reliability versus Safety, Failures, Errors and Faults ,

Origins of Defects – Cost of defects – Defect Classes – The Defect Repository and

Test Design

1:1Why do we need testing for software?

 Software testing is imperative, as it identifies any issues and defects with the

written code so they can be fixed before the software product is delivered.

Improves product quality. When it comes to customer appeal, delivering a quality

product is an important metric to consider.

Software testing

Software testing is the process of evaluating and verifying that a software product

or application does what it is supposed to do. The benefits of testing

include preventing bugs, reducing development costs and improving performance.

 Main reason of testing:

First, testing is about verifying that what was specified is what was delivered: it verifies that

the product (system) meets the functional, performance, design, and implementation

requirements identified in the procurement specifications.

4 benefits of software testing:

Benefits of Software Testing

 Customer Satisfaction. ...

 Cost Effective. ...

 Quality Product. ...

 Low Failure. ...

 Bug-Free Application. ...

 Security. ...

 Easy Recovery. ...

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

1:2Software Testing Life Cycle (STLC)

 The Software Testing Life Cycle (STLC) is a systematic approach to testing a

software application to ensure that it meets the requirements and is free of defects. It

is a process that follows a series of steps or phases, and each phase has specific

objectives and deliverables. The STLC is used to ensure that the software is of high

quality, reliable, and meets the needs of the end-users.

 The main goal of the STLC is to identify and document any defects or issues in the

software application as early as possible in the development process. This allows for

issues to be addressed and resolved before the software is released to the public.

 The stages of the STLC include Test Planning, Test Analysis, Test Design, Test

Environment Setup, Test Execution, Test Closure, and Defect Retesting. Each of

these stages includes specific activities and deliverables that help to ensure that the

software is thoroughly tested and meets the requirements of the end users.

 Overall, the STLC is an important process that helps to ensure the quality of

software applications and provides a systematic approach to testing. It allows

organizations to release high-quality software that meets the needs of their

customers, ultimately leading to customer satisfaction and business success.

 Characteristics of STLC

 STLC is a fundamental part of the Software Development Life Cycle (SDLC) but STLC

consists of only the testing phases.

 STLC starts as soon as requirements are defined or software requirement document is

shared by stakeholders.

 STLC yields a step-by-step process to ensure quality software.

In the initial stages of STLC, while the software product or the application is being

developed, the testing team analyzes and defines the scope of testing, entry and exit criteria,

and also test cases. It helps to reduce the test cycle time and also enhances product quality.

As soon as the development phase is over, the testing team is ready with test cases and

starts the execution. This helps in finding bugs in the early phase.

Phases of STLC

1. Requirement Analysis: Requirement Analysis is the first step of the Software Testing

Life Cycle (STLC). In this phase quality assurance team understands the requirements like

what is to be tested. If anything is missing or not understandable then the quality assurance

team meets with the stakeholders to better understand the detailed knowledge of

requirements.

The activities that take place during the Requirement Analysis stage include:

 Reviewing the software requirements document (SRD) and other related documents

 Interviewing stakeholders to gather additional information

 Identifying any ambiguities or inconsistencies in the requirements

 Identifying any missing or incomplete requirements

 Identifying any potential risks or issues that may impact the testing process

Creating a requirement traceability matrix (RTM) to map requirements to test cases

At the end of this stage, the testing team should have a clear understanding of the software

requirements and should have identified any potential issues that may impact the testing

https://practice.geeksforgeeks.org/problems/software-development-life-cycle

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

process. This will help to ensure that the testing process is focused on the most important

areas of the software and that the testing team is able to deliver high-quality results.

2. Test Planning: Test Planning is the most efficient phase of the software testing life

cycle where all testing plans are defined. In this phase manager of the testing, team

calculates the estimated effort and cost for the testing work. This phase gets started once

the requirement-gathering phase is completed.

The activities that take place during the Test Planning stage include:
 Identifying the testing objectives and scope

 Developing a test strategy: selecting the testing methods and techniques that will be

used

 Identifying the testing environment and resources needed

 Identifying the test cases that will be executed and the test data that will be used

 Estimating the time and cost required for testing

 Identifying the test deliverables and milestones

 Assigning roles and responsibilities to the testing team

 Reviewing and approving the test plan

At the end of this stage, the testing team should have a detailed plan for the testing

activities that will be performed, and a clear understanding of the testing objectives, scope,

and deliverables. This will help to ensure that the testing process is well-organized and that

the testing team is able to deliver high-quality results.

3. Test Case Development: The test case development phase gets started once the test

planning phase is completed. In this phase testing team notes down the detailed test cases.

The testing team also prepares the required test data for the testing. When the test cases are

prepared then they are reviewed by the quality assurance team.

The activities that take place during the Test Case Development stage include:
 Identifying the test cases that will be developed

 Writing test cases that are clear, concise, and easy to understand

 Creating test data and test scenarios that will be used in the test cases

 Identifying the expected results for each test case

 Reviewing and validating the test cases

 Updating the requirement traceability matrix (RTM) to map requirements to test cases

At the end of this stage, the testing team should have a set of comprehensive and accurate

test cases that provide adequate coverage of the software or application. This will help to

ensure that the testing process is thorough and that any potential issues are identified and

addressed before the software is released

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

4. Test Environment Setup: Test environment setup is a vital part of the STLC. Basically,

the test environment decides the conditions on which software is tested. This is independent

activity and can be started along with test case development. In this process, the testing

team is not involved. either the developer or the customer creates the testing environment.

5. Test Execution: After the test case development and test environment setup test

execution phase gets started. In this phase testing team starts executing test cases based on

prepared test cases in the earlier step.

The activities that take place during the test execution stage of the Software Testing

Life Cycle (STLC) include:

 Test execution: The test cases and scripts created in the test design stage are run

against the software application to identify any defects or issues.

 Defect logging: Any defects or issues that are found during test execution are logged in

a defect tracking system, along with details such as the severity, priority, and

description of the issue.

 Test data preparation: Test data is prepared and loaded into the system for test

execution

 Test environment setup: The necessary hardware, software, and network

configurations are set up for test execution

 Test execution: The test cases and scripts are run, and the results are collected and

analyzed.

 Test result analysis: The results of the test execution are analyzed to determine the

software’s performance and identify any defects or issues.

 Defect retesting: Any defects that are identified during test execution are retested to

ensure that they have been fixed correctly.

 Test Reporting: Test results are documented and reported to the relevant stakeholders.

It is important to note that test execution is an iterative process and may need to be repeated

multiple times until all identified defects are fixed and the software is deemed fit for

release.

6. Test Closure: Test closure is the final stage of the Software Testing Life Cycle (STLC)

where all testing-related activities are completed and documented. The main objective of

the test closure stage is to ensure that all testing-related activities have been completed and

that the software is ready for release.

At the end of the test closure stage, the testing team should have a clear understanding of

the software’s quality and reliability, and any defects or issues that were identified during

testing should have been resolved. The test closure stage also includes documenting the

testing process and any lessons learned so that they can be used to improve future testing

processes

Test closure is the final stage of the Software Testing Life Cycle (STLC) where all testing-

related activities are completed and documented. The main activities that take place during

the test closure stage include:

 Test summary report: A report is created that summarizes the overall testing process,

including the number of test cases executed, the number of defects found, and the

overall pass/fail rate.

 Defect tracking: All defects that were identified during testing are tracked and

managed until they are resolved.

 Test environment clean-up: The test environment is cleaned up, and all test data and

test artifacts are archived.

 Test closure report: A report is created that documents all the testing-related activities

that took place, including the testing objectives, scope, schedule, and resources used.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Knowledge transfer: Knowledge about the software and testing process is shared with

the rest of the team and any stakeholders who may need to maintain or support the

software in the future.

 Feedback and improvements: Feedback from the testing process is collected and used

to improve future testing processes

 Characteristics of STLC

 STLC is a fundamental part of the Software Development Life Cycle (SDLC) but STLC

consists of only the testing phases.

 STLC starts as soon as requirements are defined or software requirement document is

shared by stakeholders.

 STLC yields a step-by-step process to ensure quality software.

In the initial stages of STLC, while the software product or the application is being

developed, the testing team analyzes and defines the scope of testing, entry and exit criteria,

and also test cases. It helps to reduce the test cycle time and also enhances product quality.

As soon as the development phase is over, the testing team is ready with test cases and

starts the execution. This helps in finding bugs in the early phase.

1:3V-model of Software Testing

The V-model is a type of SDLC model where process executes in a sequential manner in V-

shape. It is also known as Verification and Validation model. It is based on the association

of a testing phase for each corresponding development stage. Development of each step

directly associated with the testing phase. The next phase starts only after completion of the

previous phase i.e. for each development activity, there is a testing activity corresponding

to it.

The V-Model is a software development life cycle (SDLC) model that provides a

systematic and visual representation of the software development process. It is based on the

idea of a “V” shape, with the two legs of the “V” representing the progression of the

software development process from requirements gathering and analysis to design,

implementation, testing, and maintenance.

The V-Model is a linear and sequential model that consists of the following phases:

1. Requirements Gathering and Analysis: The first phase of the V-Model is the

requirements gathering and analysis phase, where the customer’s requirements for the

software are gathered and analyzed to determine the scope of the project.

2. Design: In the design phase, the software architecture and design are developed,

including the high-level design and detailed design.

3. Implementation: In the implementation phase, the software is actually built based on the

design.

4. Testing: In the testing phase, the software is tested to ensure that it meets the customer’s

requirements and is of high quality.

5. Deployment: In the deployment phase, the software is deployed and put into use.

6. Maintenance: In the maintenance phase, the software is maintained to ensure that it

continues to meet the customer’s needs and expectations.

7. The V-Model is often used in safety-critical systems, such as aerospace and defense

systems, because of its emphasis on thorough testing and its ability to clearly define the

https://practice.geeksforgeeks.org/problems/software-development-life-cycle

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

steps involved in the software development process.

Verification: It involves static analysis technique (review) done without executing code. It

is the process of evaluation of the product development phase to find whether specified

requirements meet.

Validation: It involves dynamic analysis technique (functional, non-functional), testing

done by executing code. Validation is the process to evaluate the software after the

completion of the development phase to determine whether software meets the customer

expectations and requirements.

So V-Model contains Verification phases on one side of the Validation phases on the other

side. Verification and Validation phases are joined by coding phase in V-shape. Thus it is

called V-Model.

Design Phase:

 Requirement Analysis: This phase contains detailed communication with the customer

to understand their requirements and expectations. This stage is known as Requirement

Gathering.

 System Design: This phase contains the system design and the complete hardware and

communication setup for developing product.

 Architectural Design: System design is broken down further into modules taking up

different functionalities. The data transfer and communication between the internal

modules and with the outside world (other systems) is clearly understood.

 Module Design: In this phase the system breaks down into small modules. The detailed

design of modules is specified, also known as Low-Level Design (LLD).

Testing Phases:

 Unit Testing: Unit Test Plans are developed during module design phase. These Unit

Test Plans are executed to eliminate bugs at code or unit level.

 Integration testing: After completion of unit testing Integration testing is performed.

In integration testing, the modules are integrated and the system is tested. Integration

testing is performed on the Architecture design phase. This test verifies the

communication of modules among themselves.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 System Testing: System testing test the complete application with its functionality,

inter dependency, and communication.It tests the functional and non-functional

requirements of the developed application.

 User Acceptance Testing (UAT): UAT is performed in a user environment that

resembles the production environment. UAT verifies that the delivered system meets

user’s requirement and system is ready for use in real world.

Industrial Challenge: As the industry has evolved, the technologies have become more

complex, increasingly faster, and forever changing, however, there remains a set of basic

principles and concepts that are as applicable today as when IT was in its infancy.

 Accurately define and refine user requirements.

 Design and build an application according to the authorized user requirements.

 Validate that the application they had built adhered to the authorized business

requirements.

Principles of V-Model:

 Large to Small: In V-Model, testing is done in a hierarchical perspective, For example,

requirements identified by the project team, create High-Level Design, and Detailed

Design phases of the project. As each of these phases is completed the requirements,

they are defining become more and more refined and detailed.

 Data/Process Integrity: This principle states that the successful design of any project

requires the incorporation and cohesion of both data and processes. Process elements

must be identified at each and every requirements.

 Scalability: This principle states that the V-Model concept has the flexibility to

accommodate any IT project irrespective of its size, complexity or duration.

 Cross Referencing: Direct correlation between requirements and corresponding testing

activity is known as cross-referencing.

Tangible Documentation: This principle states that every project needs to create a

document. This documentation is required and applied by both the project development

team and the support team. Documentation is used to maintaining the application once it is

available in a production environment.

Why preferred?

 It is easy to manage due to the rigidity of the model. Each phase of V-Model has

specific deliverables and a review process.

 Proactive defect tracking – that is defects are found at early stage.

When to use?

 Where requirements are clearly defined and fixed.

 The V-Model is used when ample technical resources are available with technical

expertise.

 Small to medium-sized projects with set and clearly specified needs are recommended

to use the V-shaped model.

 Since it is challenging to keep stable needs in large projects, the project should be

small.

Advantages:

 This is a highly disciplined model and Phases are completed one at a time.

 V-Model is used for small projects where project requirements are clear.

 Simple and easy to understand and use.

 This model focuses on verification and validation activities early in the life cycle

thereby enhancing the probability of building an error-free and good quality product.

 It enables project management to track progress accurately.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Clear and Structured Process: The V-Model provides a clear and structured process for

software development, making it easier to understand and follow.

 Emphasis on Testing: The V-Model places a strong emphasis on testing, which helps to

ensure the quality and reliability of the software.

 Improved Traceability: The V-Model provides a clear link between the requirements

and the final product, making it easier to trace and manage changes to the software.

 Better Communication: The clear structure of the V-Model helps to improve

communication between the customer and the development team.

Disadvantages:

 High risk and uncertainty.

 It is not a good for complex and object-oriented projects.

 It is not suitable for projects where requirements are not clear and contains high risk of

changing.

 This model does not support iteration of phases.

 It does not easily handle concurrent events.

 Inflexibility: The V-Model is a linear and sequential model, which can make it difficult

to adapt to changing requirements or unexpected events.

 Time-Consuming: The V-Model can be time-consuming, as it requires a lot of

documentation and testing.

 Overreliance on Documentation: The V-Model places a strong emphasis on

documentation, which can lead to an overreliance on documentation at the expense of

actual development work.

1:4 BASIC DEFINATIONS

Goals of Testing:

• Detect faults

• Establish confidence in software

• Evaluate properties of software

– Reliability

– Performance

– Memory Usage

– Security

– Usability

Why Test?

• Devil's Advocate:

 Program testing can be used to show the presence of defects, but never their

absence!"

- -Dijkstra

We can never be certain that a testing system is correct."

 --Manna

•In Defence of Testing:

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Testing is the process of showing the presence of defects.

 There is no absolute notion of \correctness".

 Testing remains the most cost effective approach to building

 confidence within most software systems.

Most Common Software problems:

 Incorrect calculation

 Incorrect data edits & ineffective data edits

 Incorrect matching and merging of data

 Data searches that yields incorrect results

 Incorrect processing of data relationship

 Incorrect coding / implementation of business rules

 Inadequate software performance

 Confusing or misleading data

 Software usability by end users &

 Obsolete Software

 Inconsistent processing

 Unreliable results or performance

 Inadequate support of business needs

 Incorrect or inadequate interfaces

 with other systems

 Inadequate performance and security controls

 Incorrect file handling

What is Software Testing?

Executing software in a simulated or real environment, using inputs selected somehow.

Testing is the process of exercising or evaluating a system orsystem component by manual

or automated means to verifythat it satisfies specified requirements, or to identify

differencesbetween expected and actual results.

 --" IEEE

The process of executing a program or system with the intentof finding errors.

-- (Myers 1979)

The measurement of software quality." -- (Hetzel 1983

Errors:

An error is a mistake, misconception, or misunderstanding on the part of a software

developer.

Faults (Defects):

A fault (defect) is introduced into the software as the result of an error. It is an anomaly in

the software that may cause it to behave incorrectly, and not according to its specification.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

Failures:

A failure is the inability of a software system or component to perform its required

functions within specified performance requirements .

Test cases:

A test case in a practical sense is a test-related item which contains the following

information:

1. A set of test inputs.These are data items received from an external source by the code

under test. The external source can be hardware, software, or human.

2. Execution conditions.These are conditions required for running the test, for example, a

certain state of a database, or a configuration of a hardware device.

3. Expected outputs.These are the specified results to be produced by the code under test.

Test

A test is a group of related test cases, or a group of related test cases and test procedure

Test Oracle

A test oracle is a document, or piece of software that allows testers to determine whether a

test has been passed or failed.

Test Bed

A test bed is an environment that contains all the hardware and software needed to test a

software component or a software system.

Software Quality

Two concise definitions for quality are found in the IEEE Standard Glossary of Software

Engineering Terminology

1. Quality relates to the degree to which a system, system component, or process meets

specified requirements.

2. Quality relates to the degree to which a system, system component, or process meets

customer or user needs, or expectations.

Metric:

• A metric is a quantitative measure of the degree to which a system, system

component, or process possesses a given attribute.

• A quality metric is a quantitative measurement of the degree to which an item

possesses a given quality attribute

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

IEEE Standards for Software Quality Metrics Methodology and work by Schulmeyer

and Grady [6–8]. Some examples of quality attributes with brief explanations are the

following:

correctness—the degree to which the system performs its intended function

reliability—the degree to which the software is expected to perform its

required functions under stated conditions for a stated period of time

usability—relates to the degree of effort needed to learn, operate, prepare

input, and interpret output of the software

integrity—relates to the system’s ability to withstand both intentional and

accidental attacks

portability—relates to the ability of the software to be transferred from one

environment to another

maintainability—the effort needed to make changes in the software

interoperability—the effort needed to link or couple one system to another.

Review:

A review is a group meeting whose purpose is to evaluate a software artifact or a set of

software artifacts

What is an Error?

Error is a situation that happens when the Development team or the developer fails to

understand a requirement definition and hence that misunderstanding gets translated into

buggy code. This situation is referred to as an Error and is mainly a term coined by the

developers.

 Errors are generated due to wrong logic, syntax, or loop that can impact the end-user

experience.

 It is calculated by differentiating between the expected results and the actual results.

 It raises due to several reasons like design issues, coding issues, or system specification

issues and leads to issues in the application.

What is a Fault?

Sometimes due to certain factors such as Lack of resources or not following proper steps

Fault occurs in software which means that the logic was not incorporated to handle the

errors in the application. This is an undesirable situation, but it mainly happens due to

invalid documented steps or a lack of data definitions.

 It is an unintended behavior by an application program.

 It causes a warning in the program.

 If a fault is left untreated it may lead to failure in the working of the deployed code.

 A minor fault in some cases may lead to high-end error.

 There are several ways to prevent faults like adopting programming techniques,

development methodologies, peer review, and code analysis.

What is a Failure?

Failure is the accumulation of several defects that ultimately lead to Software failure and

results in the loss of information in critical modules thereby making the system

unresponsive. Generally, such situations happen very rarely because before releasing a

product all possible scenarios and test cases for the code are simulated. Failure is detected

by end-users once they face a particular issue in the software.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Failure can happen due to human errors or can also be caused intentionally in the

system by an individual.

 It is a term that comes after the production stage of the software.

 It can be identified in the application when the defective part is executed.

A simple diagram depicting Bug vs Defect vs Fault vs Failure:

Bug vs Defect vs Error vs Fault vs Failure

Some of the vital differences between bug, defect, fault, error, and failure are listed in the

below table:

Basis Bug Defect Fault Error Failure

Definiti

on

A bug refers

to defects

which means

that the

software

product or the

application is

not working

as per the

adhered

requirements

set

A Defect is a

deviation

between the

actual and

expected output

A Fault is a

state that

causes the

software to

fail and

therefore it

does not

achieve its

necessary

function.

An Error is a

mistake made in

the code due to

which

compilation or

execution fails,

Failure is the

accumulation

of several

defects that

ultimately

lead to

Software

failure and

results in the

loss of

information

in critical

modules

thereby

making the

system

unresponsive.

Raised

by

Test

Engineers

 The defect is

identified by

The Testers

And is resolved

by developers

in the

development

phase of

SDLC.

Human

mistakes lead

to fault.

Developers and

automation test

engineers

The failure is

found by the

test engineer

during the

 development

cycle of

SDLC

Differe

nt types

 Logical

bugs

 Algorithm

 Defects are

classified as

follows:

 Business

Logic

Faults

 Syntactic

Error

 UI screen

NA

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

Basis Bug Defect Fault Error Failure

ic bugs

 Resource

bugs

Based on

Priority:
 High

 Medium

 Low

Based on

Severity:

 Critical

 Major

 Minor

 Trivial

 Function

al and

Logical

Faults

 Graphical

User

Interface

(GUI)

Faults

 Performa

nce

Faults

 Security

Faults

 Hardware

Faults

error

 Error

handling

error

 Flow control

error

 Calculation

error

 Hardware

error

Reasons

behind

 Missing

Logic

 Erroneous

Logic

 Redundant

codes

 Receiving

&

providing

incorrect

input

 Coding/Log

ical Error

leading to

the

breakdown

of software

 Wrong

design of

the data

definition

processes

.

 An

irregulari

ty in

Logic or

gaps in

the

software

leads to

the non-

functioni

ng of the

software.

 Error in code.

 Inability to

compile/exec

ute a

program

 Ambiguity in

code logic

 Misunderstan

ding of

requirements

 Faulty design

and

architecture

 Logical error

 Environm

ent

variables

 System

Errors

 Human

Error

Way to

prevent

the

reasons

 Implement

ing Test-

driven

developm

ent.

 Adjusting

enhanced

developm

ent

practices

 Implementi

ng Out-of-

the-box

programmi

ng methods.

 Proper

usage of

primary and

correct

software

 Peer

review of

the Test

document

s and

requirem

ents.

 Verifying

the

correctne

 Conduct peer

reviews and

code-reviews

 Need for

validation of

bug fixes and

enhancing the

overall

quality of

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

Basis Bug Defect Fault Error Failure

and

evaluation

of

 cleanlines

s of the

code.

coding

practices.

ss of

software

design

and

coding.

1:5 Software Testing Principles

A principle can be defined as:

1. a general or fundamental, law, doctrine, or assumption;

2. a rule or code of conduct;

3. the laws or facts of nature underlying the working of an artificial device.

Principle 1. Testing is the process of exercising a software component using a selected

set of test cases, with the intent of (i) revealing defects, and (ii) evaluating quality.

Principle 2. When the test objective is to detect defects, then a good test case is one that has a

high probability of revealing a yet undetected defect(s).

Principle 3. Test results should be inspected meticulously.

Principle 4. A test case must contain the expected output or result.

Principle 5. Test cases should be developed for both valid and invalid input

conditions.

Principle 6. The probability of the existence of additional defects in a software

component is proportional to the number of defects already detected in that

component.

Principle 7. Testing should be carried out by a group that is independent of the

development group.

Principle 8. Tests must be repeatable and reusable.

Principle 9. Testing should be planned.

Principle 10. Testing activities should be integrated into the software life cycle

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

1.6 THE TESTER’S ROLE IN A SOFTWARE DEVELOPMENT ORGANIZATION

Testing is sometimes erroneously viewed as a destructive activity. The tester’s job is to,

 reveal defects,

 find weak points,

 inconsistentbehavior, and

 circumstances where the software does not work as expected.

It is difficult for developers to effectively test their own code (Principles 3 and 8).

Developers view their own code as their creation, their “baby,” and they think that nothing

could possibly be wrong with it!

A tester requires extensive programming experience in order to understand,

 how code is constructed, and

 where, and what kind of, defects are likely to occur.

 Testers also need to work along side with Requirements Engineers

 To ensure that requirements are testable, and to plan for system &acceptance test

Designers

 To plan for integration and unit test. Project Manager

 To develop reasonable test plans,Upper Management

 To provide input for the development and maintenance of organizational testing

standards, polices, and goals.software quality assurance staff and software

engineering process group members.

In view of these requirements for multiple working relationships, communication and team

working skills are necessary for a successful career as a tester.

Developers, analysts, and marketing staff need to realize that testers add value to a software

product in that they detect defects and evaluate quality as early as possible in the software

life cycle. This ensures that developers release code with few or no defects, and that

marketers can deliver software that satisfies the customers’ requirements, and is reliable,

usable, and correct.

1:7 Origins of Defects

The term defect and its relationship to the terms error and failure in the context of the

software development.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Defects have detrimental affects on software users, and software engineers work

very hard to produce high-quality software with a low number of defects. But even under the

best of development circumstances errors are made, resulting in defects being injected in the

software during the phases of the software life cycle.

1. Education: The software engineer did not have the proper educational background to

prepare the software artifact. She did not understand how to do something.

• For example, a software engineer who did not understand the precedence order

of operators in a particular programming language could inject a defect in an

equation that uses the operators for a calculation.

2. Communication: The software engineer was not informed about something by a

colleague.

• For example, if engineer 1 and engineer 2 are working on interfacing modules,

and engineer 1 does not inform engineer 2 that a no error checking code will

appear in the interfacing module he is developing, engineer 2 might make an

incorrect assumption relating to the presence/absence of an error check, and a

defect will result.

3. Oversight: The software engineer omitted to do something. For example, a software

engineer might omit an initialization statement.

4. Transcription:The software engineer knows what to do, but makes a mistake in doing it. A

simple example is a variable name being misspelled when entering the code.

5. Process:The process used by the software engineer misdirected her actions. For example, a

development process that did not allow sufficient time for a detailed specification to be

developed and reviewed could lead to specification defects

 When defects are present due to one or more of these circumstances, the software

may fail, and the impact on the user ranges from a minor inconvenience to rendering the

software unfit for use. Our goal as testers is to discover these defects preferably before the

software is in operation.

 One of the ways we do this is by designing test cases that have a high probability of

revealing defects.

HYPOTHESIS:

 Test cases are then designed based on the hypotheses. The tests are run and results

analyzed to prove, or disprove, the hypotheses.

 Myers has a similar approach to testing. He describes the successful test as one that

reveals the presence of a (hypothesized) defect]. He compares the role of a tester to

that of a doctor who is in the process of constructing a diagnosis for an ill patient.

 A successful test will reveal the problem and the doctor can begin treatment.

Completing the analogy of doctor and ill patient, one could view defective software as

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

the ill patient. Testers as doctors need to have knowledge about possible defects

(illnesses) in order to develop defect hypotheses. They use the hypotheses to:

• design test cases;

• design test procedures;

• assemble test sets;

• select the testing levels (unit, integration, etc.)

 Appropriate for the tests;

• evaluate the results of the tests.

 A successful testing experiment will prove the hypothesis is true—that is, the

hypothesized defect was present. Then the software can be repaired (treated).

 A very useful concept related to this discussion of defects, testing, and diagnosis is

that of a fault model.

A fault (defect) model can be described as a link between the error made (e.g., amissing

requirement, a misunderstood design element, a typographical error), andthe

fault/defect in the software.

 Digital system engineers describe similar models that link physical defects in digital

components to electrical (logic) effects in the resulting digital system Physical defects

in the digital world may be due to manufacturing errors, component wear-out, and/or

environmental effects.

 The fault models are often used to generate a fault list or dictionary. From that

dictionary faults can be selected, and test inputs developed for digital components.

 The effectiveness of a test can be evaluated in the context of the fault model, and is

related to the number of faults as expressed in the model, and those actually revealed

by the test.

Topic 9: Defect Classes, the Defect Repository, and Test Design

 Defects can be classified in many ways. It is important for an organization to adapt a

single classification scheme and apply it to all projects. No matter which classification

scheme is selected, some defects will fit into more than one class or category. Because

of this problem, developers, testers, and SQA staff should try to be as consistent as

possible when recording defect data.

 The defect types and frequency of occurrence should be used to guide test planning,

and test design. Execution-based testing strategies should be selected that have the

strongest possibility of detecting particular types of defects.

 It is important that tests for new and modified software be designed to detect the most

frequently occurring defects.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Defects, as described in this text, are assigned to four major classes reflecting their

point of origin in the software life cycle—the development phase in which they were

injected. These classes are: requirements/ specifications, design, code, and testing

defects as summarized.

 It should be noted that these defect classes and associated subclasses focus on defects

that are the major focus of attention to execution-based testers.

1 R e q u i r e m e n t s a n d S p e c i f i c a t i o n D e f e c t s

 The beginning of the software life cycle is critical for ensuring high quality in the

software being developed. Defects injected in early phases can persist and be very

difficult to remove in later phases.

 Since many requirements documents are written using a natural language

representation, there are very often occurrences of ambiguous, contradictory, unclear,

redundant, and imprecise requirements. Specifications in many organizationsare also

developed using natural language representations, and these too are subject to the

same types of problems as mentioned above.

1 . Functional Description Defects

The overall description of what the product does, and how it should behave (inputs/outputs),

is incorrect, ambiguous, and/or incomplete.

2 . Feature Defects

Features may be described as distinguishing characteristics of a software component or

system.

3 . Feature Interaction Defects

 These are due to an incorrect description of how the features should interact. For

example, suppose one feature of a software system supports adding a new customer to

a customer database.

 This feature interactswithanother feature that categorizes the new customer. The

classification feature impacts on where the storage algorithm places the new customer

in the database, and also affects another feature that periodically supportssending

advertising information to customers in a specific category. When testing we certainly

want to focus on the interactions between these features.

4 . Interface Description Defects

 These are defects that occur in the description of how the target software is to

interface with external software, hardware, and users. For detecting many functional

description defects, black box testing techniques, which are based on functional

specifications of the software, offer the best approach.

 Randomtesting and error guessing are also useful for detecting these types of defects.

The reader should note that many of these types of defects can be detected early in the

life cycle by software reviews.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 Black box–based tests can be planned at the unit, integration, system, and acceptance

levels to detect requirements/specification defects.

 Manyfeature interaction and interfaces description defects are detected using black

box–based test designs at the integration and system levels.

Topic 9:2 D e s i g n D e f e c t s

Design defects occur when system components, interactions between system components,

interactions between the components and outside ware/hardware, or users are incorrectly

designed.

This covers defects in the design of algorithms, control, logic, data elements, module

interface descriptions, and external software/hardware/user interface descriptions.

When describing these defects we assume that the detailed design description for the software

modules is at the pseudo code level with processing steps, data structures, input/output

parameters, and major control structures defined.

If module design is not described in such detail then many of the defects types described here

may be moved into the coding defects class.

1 . Algorithmic and Processing Defects

These occur when the processing steps in the algorithm as described by the pseudo code are

incorrect.

 Example: of a defect in this subclass is the omission of error condition checks

such as division by zero. In the case of algorithm reuse, a designer may have selected an

inappropriate algorithm for this problem

2 . Control, Logic, and Sequence Defects

Control defects occur when logic flow in the pseudo code is not correct.

 For example: branching to soon, branching to late, or use of an incorrect branching

condition

3 . Data Defects

These are associated with incorrect design of data structures. For example, a record may be

lacking a field, an incorrect type is assigned to a variable or a field in a record, an array may

not have the proper numberof elements assigned, or storage space may be allocated

incorrectly.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

4 . Module Interface Description Defects

These are defects derived from, for example, using incorrect, and/or inconsistent parameter

types, an incorrect number of parameters, or an incorrect ordering of parameters.

5 . Functional Description Defects

The defects in this category include incorrect, missing, and/or unclear design elements.

For example, the design may not properly describe the correct functionality of a module.

These defects are best detected during a design review.

6 . External Interface Description Defects

These are derived from incorrect design descriptions for interfaces with COTS components,

external software systems, databases, and hardware devices (e.g., I/O devices).

Other examples are user interface descriptiondefects where there are missing or improper

commands, improper sequences of commands, lack of proper messages, and/or lack of

feedback messages for the user.

Topic 9:3 . C o d i n g D e f e c t s

Coding defects are derived from errors in implementing the code. Coding defects classes are

closely related to design defect classes especially if pseudo code has been used for detailed

design.

Some coding defects comefrom a failure to understand programming language constructs,

and miscommunication with the designers. Others may have transcription or omission

origins. At times it may be difficult to classify a defect as a designor as a coding defect.

1 . Algorithmic and Processing Defects

Adding levels of programming detail to design, code-related algorithmic and processing

defects would now include unchecked overflow and underflow conditions, comparing

inappropriate data types, converting one data type to another, incorrect ordering of arithmetic

operators (perhaps due to misunderstanding of the precedence of operators), misuse or

omission of parentheses, precision loss, and incorrect use of signs.

2 . Control, Logic and Sequence Defects

On the coding level these would include incorrect expression of case statements, incorrect

iteration of loops (loop boundary problems), and missing paths.

3 . Typographical Defects

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

These are principally syntax errors, for example, incorrect spelling of a variable name, that

are usually detected by a compiler, self-reviews, or peer reviews.

4 . I n i t i a l i z a t i o n Defects

These occur when initialization statements are omitted or are incorrect. This may occur

because of isunderstandings or lack of communication between programmers, and/or

programmers and designers, carelessness,

or misunderstanding of the programming environment.

5 . Data-Flow Defects

There are certain reasonable operational sequences that data should flow through. For

example, a variable should be initialized, before it is used in a calculation or a condition. It

should not be initialized twice before there is an intermediate use. A variable should not be

disregarded before it is used.

Occurrences of these suspicious variable uses in the code may, or may not, cause anomalous

behavior. Therefore, in the strictest sense of the definition for the term “defect,” they may not

be considered as true instances of defects.

6 . Data Defects

These are indicated by incorrect implementation of data structures. For example, the

programmer may omit a field in a record, an incorrect type or access is assigned to a file, an

array may not be allocated the proper number of elements. Other data defects include flags,

indices, and constants set incorrectly.

7 . Module Interface Defects

As in the case of module design elements, interface defects in the code may be due to using

incorrect or inconsistent parameter types, an incorrect number of parameters, or improper

ordering of the parameters. In addition to defects due to improper design, and improper

implementation of design, programmers may implement an incorrect sequence of calls or

calls to nonexistent modules.

8 . Code Documentation Defects

When the code documentation does not reflect what the program actually does, or is

incomplete or ambiguous, this is called a code documentation defect. Incomplete, unclear,

incorrect, and out-of-date code documentationaffects testing efforts. Testers may be misled

by documentation defects and thus reuse improper tests or design new tests that are not

appropriate for the code. Code reviews are the best tools to detect these types of defects.

9 . External Hardware, Software Interfaces Defects

These defects arise from problems related to system calls, links to databases, input/output

sequences, memory usage, resource usage, interrupts and exception handling, data exchanges

with hardware, protocols, formats, interfaces with build files, and timing sequences (race

conditions may result).

Many initialization, data flow, control, and logic defects that occur in design and code are

best addressed by white box testing techniques applied at the unit (single-module) level.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

 White box testing approaches are dependent on knowledge of the internal structure of the

software, in contrast to black box approaches, which are only dependent on behavioral

specifications.

For example, application of decision tables is very useful for detecting errors in Boolean

expressions. Black box tests as described in applied at the integration and system levels help

to reveal external hardware and software interface defects. The author will stress repeatedly

throughout the text that a combination of both of these approaches is needed to reveal the

many types of defects that are likely to be found in software.

Topic 9:4 T e s t i n g D e f e c t s

Defects are not confined to code and its related artifacts. Test plans, test cases, test harnesses,

and test procedures can also contain defects. Defects in test plans are best detected using

review techniques.

1 . Test Harness Defects

In order to test software, especially at the unit and integration levels, auxiliary code must be

developed. This is called the test harness or scaffolding code. Chapter 6 has a more detailed

discussion of the need for this code. The test harness code should be carefully designed,

implemented, and tested since it a work product and much of this code can be reused when

new releases of the software are developed. Test harnesses are subject to the same types of

code and design defects that can be found in all other types of software.

2 . Test Case Design and Test Procedure Defects

These would encompass incorrect, incomplete, missing, inappropriate test cases, and test

procedures. These defects are again best detected in test plan reviews.. Sometimes the defects

are revealed during the testing process itself by means of a careful analysis of test conditions

and test results. Repairs will then have to be made.

Topic :10 Defect Examples: The Coin Problem

The following examples illustrate some instances of the defect classes that were discussed in

the previous sections. A simple specification, a detailed design description, and the resulting

code are shown, and defects in eachare described. Note that these defects could be injected

via one or more of the five defect sources discussed at the beginning of this chapter. Also

note that there may be more than one category that fits a given defect.

Sample informal specification for a simple program that calculates the total monetary value

of a set of coins.Theprogram could be a component of an interactive cash register system to

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

support retail store clerks. This simple example shows requirements/ specification defects,

functional description defects, and interface description defects.

The functional description defects arise because the functional description is ambiguous and

incomplete. It does not state that the input, number_of_coins, and the output,

number_of_dollars and number _of_cents, should all have values of zero or greater. The

number_of_coins cannot be negative, and the values in dollars and cents cannot be negative

in the real-world domain. As a consequence of these ambiguities and specification

incompleteness, a checking routine may be omitted from the design, allowing the final

program to accept negative values for the input

number_of_coins for each of the denominations, and consequently it may calculate an invalid

value for the results.

A more formally stated set of preconditions and postconditions would be helpful here, and

would address some of the problems with the specification. These are also useful for

designing black box tests.

A precondition is a condition that must be true in order for a software component to

operate properly.

In this case a useful precondition would be one that states for example:

 Number-of-coins >= 0

A postcondition is a condition that must be true when a software component completes

its operation properly.

A useful postcondition would be:

Number-of-dollars, number-of-cents >0.

In addition, the functional description is unclear about the largest number of coins of each

denomination allowed, and the largest number of dollars and cents allowed as output values.

A sample specification with defects.

Interface description defects relate to the ambiguous and incomplete

description of user–software interaction. It is not clear from the specification

how the user interacts with the program to provide input, and how

the output is to be reported. Because of ambiguities in the user interaction

description the software may be difficult to use.

Likely origins for these types of specification defects lie in the nature

of the development process, and lack of proper education and training.

A poor-quality development process may not be allocating the proper

time and resources to specification development and review. In addition,

software engineers may not have the proper education and training to

develop a quality specification. All of these specification defects, if not

detected and repaired, will propagate to the design and coding phases.

Black box testing techniques, which we will study in Chapter 4, will help

to reveal many of these functional weaknesses.

Figure 3.4 shows the specification transformed in to a design description.

There are numerous design defects, some due to the ambiguous and

incomplete nature of the specification; others are newly introduced.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

Design defects include the following:

Control, logic, and sequencing defects.

The defect in this subclass arises from an incorrect “while” loop condition (should be less

than or equal to six)

Design Description for Program calculate_coin_values:

Program calculate_coin_values

number_of_coins is integer

total_coin_value is integer

number_of_dollars is integer

number_of_cents is integer

coin_values is array of six integers representing

each coin value in cents

initialized to: 1,5,10,25,25,100

begin

initializetotal_coin_value to zero

initializeloop_counter to one

whileloop_counter is less then six

begin

output "enter number of coins"

read (number_of_coins)

total_coin_value = total_coin_value +

number_of_coins * coin_value[loop_counter]

incrementloop_counter

end

number_dollars = total_coin_value/100

number_of_cents = total_coin_value - 100 * number_of_dollars

output (number_of_dollars, number_of_cents)

end

Algorithmic, and processing defects.

These arise from the lack of error checks for incorrect and/or invalid inputs, lack of a path

where users can correct erroneous inputs, lack of a path for recovery from input errors. The

lack of an error check could also be counted as a functional design defect since the design

does not adequately describe the proper functionality for the program.

Data defects.

This defect relates to an incorrect value for one of the elements of the integer array,

coin_values, which should read 1,5,10,25,50,100.

External interface description defects.

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

These are defects arising from the absence of input messages or prompts that introduce the

program to the user and request inputs. The user has no way of knowing in which order the

number of coins for each denomination must be input, and when to stop inputting values.

There is an absence of help messages, and feedback

for user if he wishes to change an input or learn the correct format and order for inputting the

number of coins. The output description and output formatting is incomplete. There is no

description of what the outputs means in terms of the problem domain. The user will note that

two values are output, but has no clue as to their meaning. The ontrol and logic design

defects are best addressed by white box– based tests, (condition/branch testing, loop testing).

These other designdefects will need a combination of white and black box testing techniques

for detection.

.

Control, logic, and sequence defects.

These include the loop variable increment step which is out of the scope of the loop. Note

that incorrect loop condition (i _ 6) is carried over from design and should be counted as a

design defect.

Algorithmic and processing defects.

The division operator may cause problems if negative values are divided, although this

problem could be eliminated with an input check.

Data Flow defects.

The variable total_coin_value is not initialized. It is used before it is defined. (This might also

be considered a data defect.)

Data Defects.

The error in initializing the array coin_values is carried over from design and should be

counted as a design defect.

External Hardware, Software Interface Defects.

The call to the external function “scanf” is incorrect. The address of the variable must be

provided (&number_of_coins).

Code Documentation Defects.

The documentation that accompanies this code is incomplete and ambiguous. It reflects the

deficiencies in the external interface description and other defects that occurred during

specification and design. Vital information is missing for anyone who will need to repair,

maintain or reuse this code. The control, logic, and sequence, data flow defects found in this

example could be detected by using a combination of white and black box

testing techniques. Black box tests may work well to reveal the algorithmic and data defects.

The code documentation defects require a code review for detection

/***

programcalculate_coin_values calculates the dollar and cents

value of a set of coins of different dominations input by the user

denominations are pennies, nickels, dimes, quarters, half dollars,

JIT1026-STA 2024-2025 K.ARUN PRASAD, ASP /IT

and dollars

***/

main ()

{

inttotal_coin_value;

intnumber_of_coins = 0;

intnumber_of_dollars = 0;

intnumber_of-cents = 0;

intcoin_values = {1,5,10,25,25,100};

{

int i = 1;

while (i < 6)

{

printf("input number of coins\n");

scanf ("%d", number_of_coins);

total_coin_value = total_coin_value +

(number_of_coins * coin_value{i]);

}

i = i + 1;

number_of_dollars = total_coin_value/100;

number_of_cents = total_coin_value - (100 * number_of_dollars);

printf("%d\n", number_of_dollars);

printf("%d\n", number_of-cents);

}

/**/

	Characteristics of STLC
	Phases of STLC
	Characteristics of STLC (1)
	The V-Model is a linear and sequential model that consists of the following phases:
	Advantages:
	Disadvantages:

	1:4 BASIC DEFINATIONS
	Goals of Testing:
	• Detect faults
	• Establish confidence in software
	• Evaluate properties of software
	– Reliability
	– Performance
	– Memory Usage
	– Security
	– Usability
	Why Test?
	• Devil's Advocate:
	Program testing can be used to show the presence of defects, but never their absence!"
	- -Dijkstra
	We can never be certain that a testing system is correct."
	--Manna
	•In Defence of Testing:
	 Testing is the process of showing the presence of defects.
	 There is no absolute notion of \correctness".
	 Testing remains the most cost effective approach to building
	 confidence within most software systems.
	Most Common Software problems:
	 Incorrect calculation
	 Incorrect data edits & ineffective data edits
	 Incorrect matching and merging of data
	 Data searches that yields incorrect results
	 Incorrect processing of data relationship
	 Incorrect coding / implementation of business rules
	 Inadequate software performance
	 Confusing or misleading data
	 Software usability by end users &
	 Obsolete Software
	 Inconsistent processing
	 Unreliable results or performance
	 Inadequate support of business needs
	 Incorrect or inadequate interfaces
	 with other systems
	 Inadequate performance and security controls
	 Incorrect file handling
	What is Software Testing?
	Executing software in a simulated or real environment, using inputs selected somehow.
	Testing is the process of exercising or evaluating a system orsystem component by manual or automated means to verifythat it satisfies specified requirements, or to identify differencesbetween expected and actual results.
	--" IEEE
	The process of executing a program or system with the intentof finding errors. -- (Myers 1979)
	The measurement of software quality." -- (Hetzel 1983
	Errors:
	An error is a mistake, misconception, or misunderstanding on the part of a software developer.
	Faults (Defects):
	A fault (defect) is introduced into the software as the result of an error. It is an anomaly in the software that may cause it to behave incorrectly, and not according to its specification.
	Failures:
	A failure is the inability of a software system or component to perform its required functions within specified performance requirements .
	Test cases:
	A test case in a practical sense is a test-related item which contains the following information:
	1. A set of test inputs.These are data items received from an external source by the code under test. The external source can be hardware, software, or human.
	2. Execution conditions.These are conditions required for running the test, for example, a certain state of a database, or a configuration of a hardware device.
	3. Expected outputs.These are the specified results to be produced by the code under test.
	Test
	A test is a group of related test cases, or a group of related test cases and test procedure
	Test Oracle
	A test oracle is a document, or piece of software that allows testers to determine whether a test has been passed or failed.
	Test Bed
	A test bed is an environment that contains all the hardware and software needed to test a software component or a software system.
	Software Quality
	Two concise definitions for quality are found in the IEEE Standard Glossary of Software Engineering Terminology
	1. Quality relates to the degree to which a system, system component, or process meets specified requirements.
	2. Quality relates to the degree to which a system, system component, or process meets customer or user needs, or expectations.
	Metric:
	• A metric is a quantitative measure of the degree to which a system, system component, or process possesses a given attribute.
	• A quality metric is a quantitative measurement of the degree to which an item possesses a given quality attribute
	IEEE Standards for Software Quality Metrics Methodology and work by Schulmeyer and Grady [6–8]. Some examples of quality attributes with brief explanations are the following:
	correctness—the degree to which the system performs its intended function
	reliability—the degree to which the software is expected to perform its
	required functions under stated conditions for a stated period of time
	usability—relates to the degree of effort needed to learn, operate, prepare
	input, and interpret output of the software
	integrity—relates to the system’s ability to withstand both intentional and
	accidental attacks
	portability—relates to the ability of the software to be transferred from one
	environment to another
	maintainability—the effort needed to make changes in the software
	interoperability—the effort needed to link or couple one system to another.
	Review:
	A review is a group meeting whose purpose is to evaluate a software artifact or a set of software artifacts
	What is an Error?
	What is a Fault?
	What is a Failure?
	Bug vs Defect vs Error vs Fault vs Failure

