

Code No. : 5144/ S

FACULTY OF ENGINEERING B.E. 3/4 (ECE) I Sem. (Suppl.) Examination, July 2012 AUTOMATIC CONTROL SYSTEMS

Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part A. Answer five questions from Part B.

PART-A

(25 Marks)

- 1. Write the advantages of a synchro.
- 2. Find C(s) /R (s) of the block diagram shown in figure.

- 3. Differentiate between Routh stability criterion and Nyquist criterion.
- 4. Sketch the Root locus of (S+1) /(S+2).
- 5. Find the gain cross over frequency of 10/[S (S+2)].
- 6. Why lag and lead are called compensating networks?
- 7. Write the disadvantages of digital control system.
- 8. Write the merits and bode plots over Nyquist criterion.
- 9. Write the properties of state transition matrix.
- 10. Define state controllability.

(50 Marks)

11. For mechanical system given below find its transfer function and also find its equivalent electrical circuit using force-voltage analogy.

- 12. a) What are the specifications of a 2nd order system?
 - b) For unit step input sketch the output response of a 2nd order system for different damping factors
 - i) between 0 and 1
 - ii) greater than one and
 - iii) equal to zero.
- 13. Consider a third order system has the characteristic equation $S^3 + 3 KS^2 + (K+2)S + 4 = 0$. Find the range of K for which the system is stable using Routh Herwitz criterion.
- 14. Sketch the root locus of a system whose system transfer function is K/[S(S+2) (S+4)] and show all the calculations.
- 15. Sketch the Bode plots of a given system G (S) = $\frac{20}{S(S+2)(S+10)}$. Calculate the gain crossover frequency.
- 16. The state equations of a linear time invariant system are represented by

 $\dot{x} = A x(t) + B u(t)$. Find the state transition matrix $\phi(t)$ for

$$A = \begin{bmatrix} 0 & 1 \\ -4 & -5 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

- 17. Write short notes on the following:
 - a) The Discrete transfer function
 - b) PID controller
 - c) Architecture of Digital control system.