Invigilator's Signature \qquad

CS/ B.TECH (ECE-OLD)/ SEM-4/ EC-402/ 2012 2012
 DIGITAL ELECTRONICS CIRCUITS

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Decimal number +52 and -52 are
a) $0110100 \& 1110100$
b) $0101011 \& 1101011$
c) $0110100 \& 1101011$
d) none of these.
ii) Addition of two hexadecimal numbers 58 and 24 is
a) 7 E
b) 7 C
c) 6 B
d) F 1 .
iii) 2's complement of hexadecimal number 73A is
a) 9 C 5
b) 8 C 6
c) 8 B 7
d) 8 F 1 .
iv) Normally in HA circuit which gate is used for sum part?
a) XOR
b) NAND
c) OR
d) AND.
v) Which one is the invalid code in Excess-3 code?
a) $0001 \& 0000$
b) $0110 \& 0100$
c) $1010 \& 1100$
d) None of these.
vi) If a 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a high output?
a) 1
b) 2
c) 7
d) 8 .
vii) Which one of the following is reflected code?
a) 8421
b) Gray
c) Excess-3
d) ASCII.
viii) If (212) $x=(23)_{10}$ then what is the value of x ?
a) 2
b) 3
c) 4
d) 5 .
ix) Which of the following codes is used in K-map for representing the minterm ?
a) BCD
b) Gray
c) 8421
d) Excess-3.
$x)$ The example of a Moore machine is
a) Sequence detector
b) Binary counter
c) BCD counter
d) UP/DOWN counter.
xi) A 10 MHz signal is applied to a MOD-5 counter followed by a MOD-8 counter. The output frequency will be
a) 10 kHz
b) 2.5 kHz
c) 5 kHz
d) 25 kHz .
xii) A number of address lines in EPROM 4096×8 is
a) 2
b) 4
c) 8
d) 12 .

2. Design a 2 bit comparator using logic gates.
3. Design a BCD adder circuit to add two BCD numbers maximum. The output of the adder should also be in BCD.
4. Minimize the following expressions using K map :
$F(A, B, C, D)=\pi M(0,7,8,9,10,11,15)+\phi(1,4)$
5. Implement the function using only one $8: 1$ max. Connect $B C D$ with selection line.
$F(A, B, C, D)=\sum m(0,1,2,5,9,11,13,15)$
6. What is 'race around problem' ? How can it be overcome in JK flip-flop?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Simplify the following functions by means of K-map :
i) $F=\sum_{m}(0,2,6,10,11,12,13)+\sum_{d}(3,5,14)$.
ii) $F=\Pi_{M}(0,2,6,10,11,12,13) . \sum_{d}(6,8,10,14)$.
b) Design a common adder-subtractor and explain its function.
$5+5+5$
8. a) Write down the present state-next state table of JK \& D flip-flops and derive the characteristic equation for these two flip-flops.
b) Draw logic diagram of the master-slave flip-flop. Why is it called so ?
c) What are the differences between edge triggered and level triggered flip-flop.
$(3+3)+5+4$
9. a) Describe the operation of successive approximation type ADC. How many clock pulses are required in worst case for each conversion cycle of an 8-bit SAR type ADC?
b) Draw a neat diagram for an R-2R ladder type DAC and explain its operation.
$7+8$
10. a) Draw the circuit for a 4-bit Johnson counter using D flip-flop and explain its operation. Draw its timing diagram. How does its timing diagram differ from that of Ring counter?
b) Design a MOD-6 synchronous up-counter using JK flipflop.
11. Write short notes on any three of the following : 3×5
a) EEPROM
b) CMOS logic
c) PLD
d) Even parity generator \& checker
e) Comparator.

