RA	2	60	62
w		nn	\mathbf{n}

Reg.	No.	:	**************************

VIII Semester B.Tech. Degree (Reg./Sup. – Including Part Time) Examination, April 2015 (2007 Admn. Onwards) PT 2K6/2K6 EC 802 – OPTICAL COMMUNICATION

	P1 2K6/2K6 EC 802 - OPTICAL COMMUNICATION		
arks : 100	3 Hours Max. M	me:	Tin
5	Explain the structure of optical fiber.	. a)	١.
5	Define MFD. Explain its importance in optical fiber.	b)	
5	What are the conditions for laser action?	c)	
0μΑ.	A silicon APD has a quantum efficiency of 65% at a wavelength of 90 Suppose 0.5 μ W of optical power produces a multiplied photocurrent on 1	d)	
5 5	Find the multiplication factor M. Define quantum limit and receiver consitivity.	٥)	
5	Define quantum limit and receiver sensitivity. Give the principle of exerction of homodyne detection		
5	Give the principle of operation of homodyne detection.	f)	
5		g)	
(8×5=40)	Describe the transmission formats of SONET/SDH.	11)	
15	Explain the attenuation mechanism in optical fiber. OR	II. a)	
15	What is dispersion? What are the factors contributing to dispersion?	b)	
of LED. 15	Explain the principle of emission of light from LED. Give the structure OR	l. a)	III.
7	1) Derive the threshold condition for laser action.	b)	
8	2) Obtain the signal to noise ratio at the input of amplifier.		
15	Briefly explain the different heterodyne coherent detection schemes. OR	/. a)	IV.
15	Explain the nonlinear effects in fiber propagation.	b)	
15) Explain semiconductor optical amplifier. OR	V. a)	V
15	Write notes on SONET/SDH Networks.	b)	