
 Name :
 Uresh
 Roll No. :
 \qquad
 \qquad
 Invigilator's Signature :
 \qquad
 CS/B.Tech(CHE-OLD)/SEM-3/CHE-301/2012-13 2012
 INDUSTRIAL STOICHIOMETRY

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :
$10 \times 1=10$
i) The equation, $y=a b^{c x}$, will produce a straight line in
a) linear graph paper
b) log-log graph paper
c) semi-log paper
d) triangular graph paper.
ii) An ideal solution is one which obeys
a) Raoult's Law
b) Amagat's Law
c) Charles' Law
d) Dalton's Law.
iii) $1^{\circ} \mathrm{Brix}$ is equivalent to a sugar solution
a) 10% sugar
b) 1% sugar
c) 0.1% sugar
d) 0.01% sugar.
iv) Air has $21 \% \mathrm{O}_{2}$ and $79 \% \mathrm{~N}_{2}$ by volume respectively. What is its average molecular weight ?

a) 29
b) 28.84
c) 29.3
d) 29 .
v) One newton is equal to
a) 10^{3} dynes
b) 10 dynes
c) 10^{2} dynes
d) 10^{5} dynes.
vi) For ideal gas $C_{p}-C_{v}$ is equal to
a) zero
b) R
c) $2 R$
d) $\frac{3}{2} \mathrm{R}$.
vii) $1 \mathrm{~kg} / \mathrm{cm}^{2}$ is equal to
a) 5 m water
b) 1 m water
c) 760 mm water
d) 10 m water.
viii) The vapour pressure of water at $100^{\circ} \mathrm{C}$ is
a) $\quad 100 \mathrm{~N} / \mathrm{m}$
b) 76 cms of Hg
c) $\quad 13.56 \mathrm{cms}$ of Hg
d) 760 mm of water column.
ix) The input and output of a furnace have got the following composition by volume.

Input :
Fuel gas $+100 \%$ excess Air
CRt 12\%
CS_{2} 28\%
$\mathrm{CO}_{2} 11 \%$
$\mathrm{H}_{2} 9 \%$
$\mathrm{N}_{2} 40 \%$

Output:
(Flue gas)
$\mathrm{CO}_{2} 4.71 \%$
H_{2} O 3.05%
$\mathrm{O}_{2} \quad 10.4 \%$
$\mathrm{N}_{2} 81.84 \%$
on SO_{2} free Basis

In this system the tie component is
a) SO_{2}
b) $\mathrm{H}_{2} \mathrm{O}$
c) $\quad \mathrm{N}_{2}$
d) CO_{2}
 MKS unit is
a) $\mathrm{m} / \mathrm{s}^{2}$
b) kg / m
c) $\mathrm{kgm} / \mathrm{kgf} . \mathrm{N} . \mathrm{s}^{2}$
d) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{N} . \mathrm{s}^{2}$.
xi) 'Cox' chart which is useful in the design of a distillation column (particularly suitable for petroleum hydrocarbon) is a plot of the
a) temperature $v s \log$ (vapour pressure)
b) vapour pressure vs \log (temperature)
c) $\log ($ temperature $)$ vs $\log ($ vapour pressure)
d) $\quad \log ($ vapour pressure $)$ vs $\log ($ temperature $)$.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Define and explain units and dimensions with examples. Give examples of 5 (five) derived quantities in SI units with their symbolic abbreviations and dimensions.

The volumetric flow rate of kerosene in an 80 mm nominal diameter pipe is 75 imperial gallons / minute. Taking the density of kerosene as $0.8 \mathrm{~kg} / \mathrm{dm}^{3}$, find the mass flow in kg / s.
3. Define and explain $D B, W B$ and $D P$ and also state when $D B=W B=D P$. What do you mean by psychrometry ? What do you mean by humid heat and humid volume?

The dry bulb temperature and dew point of ambient air were found to be $302 \mathrm{~K}\left(29^{\circ} \mathrm{C}\right)$ and $291 \mathrm{~K}\left(18^{\circ} \mathrm{C}\right)$ respectively. Barometer reads 100 kPa (750 torr).

CS/B.Tech(CHE-OLD)/SEM-3/CHE-301/2012-13

Calculate :
a) the absolute molal humidity

b) the absolute humidity
c) $\% \mathrm{RH}$
d) $\%$ saturation
e) humid heat \& humid volume.

Given vapour pressure of water at $291 \mathrm{~K}=2.0624 \mathrm{kPa}$, Vapour at saturation i.e. at $302 \mathrm{~K}=4.004 \mathrm{kPa}$.
4. Calculate the specific volume of superheated steam at 10 MPa and $623 \mathrm{~K}\left(350^{\circ} \mathrm{C}\right)$ using
a) the ideal gas law
b) the van der Waals' equation.

If the actual specific volume of steam at the above conditions is $0.022442 \mathrm{~m}^{3} / \mathrm{kg}$, find the percentage error in the above cases.
5. What do mean by adiabatic flame temperature ? Calculate the heat that must be added to $3 \mathrm{k} . \mathrm{mol}$ air to heat it from $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$ to $473 \mathrm{~K}\left(100^{\circ} \mathrm{C}\right)$ using mean molal heat capacity data for air as mentioned below :
$\mathrm{C}^{\circ}{ }_{\mathrm{pm}}($ between 473 K and 298 K$)$ for air $=29.3955 \mathrm{~kJ} / \mathrm{k} \cdot \mathrm{mol} \cdot \mathrm{K}$
6. State and explain Hess's Law of heat summation with suitable example.

Answer any three of the following. $\quad 3 \times 15=45$
7. Describe the Buckingham method for forming dimensionless groups.

The frictional pressure drop $\Delta \mathrm{p}$ for the flow of a fluid through a long, straight, round pipe depends upon the length l, diameter d and average height of the wall roughness e of the pipe. The average fluid velocity is u, the density and viscosity of the fluid being ρ and μ respectively. Use the Buckingham method to make a dimensional analysis of the system.
8. An orifice calibration gave the following readings :

Average velocity of water in pipe
 Feet per second

3.42
4.25
58.0
5.25
5.88
7.02
7.30
10.05
261.0

CS/B.Tech(CHE-OLD)/SEM-3/CHE-301/2012-13 If the flow through an orifice is known to follow an equation of the type $u=k R^{n}$ where $u=$ the velocity, $R \leadsto$ the reading of the manometer, determine the values of k and n for this particular orifice.
9. Describe the method of least squares for solving simultaneous equations.

Form normal equations and hence find the most plausible values of x and y from the following equations :
$x+y=3.01,2 x-y=0.03, x+3 y=7.03,3 x+y=4.97$.
10. a) Calculate the standard heat of formation of chloroform [$\mathrm{CHCl}_{3}(\mathrm{~g})$] from its elements using Hess's law.

Data :
i) $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)$;
$\Delta \mathrm{H}=-94051 \mathrm{cal} / \mathrm{gm}$ mole
ii) $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$;

$$
\Delta \mathrm{H}=-68317 \mathrm{cal} / \mathrm{gm} \text { mole }
$$

$$
\begin{aligned}
& \text { CS/B.Tech(CHE-OLD)/SEM-3/CHE-301/2012-13 } \\
& \Delta \mathrm{H}=-40020 \mathrm{cal} / \mathrm{gm} \text { mole } \\
& \text { iv) } \mathrm{CHCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \\
& \mathrm{CO}_{2}(g)+3 \mathrm{HCl}(l) ; \Delta \mathrm{H}=-121800 \mathrm{cal} / \mathrm{gm} \text { mole }
\end{aligned}
$$

b) In a reaction mixture carbon and oxygen are present in the mole ratio of $4: 3$. The desired reaction is $\mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}$. With one atom of carbon and 0.75 mole of oxygen 0.5 mole CO_{2} is produced.

Identify the limiting reactant, the excess reactant, the percentage excess and the degree of completion of reaction.

