BE-E/er/2001/8-Sem-111 (REV COURSE) E/er/101-1 Digital Image Processing Design

ws-Con-2012

Con. 10909-12.

(REVISED COURSE)

KR-1863

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Assume suitable data wherever necessary.
- (3) Attempt any four questions from remaining questions.

1	State true or false and justify (Any Four):	20
`	(a) Poorly illuminated images can be easily segmented.	
	(b) All Image Compression techniques are invertible.	
İ	(c) Chain Codes can be made invariant to translation and rotation.	
	(d) The principal operation of median filter is to force points with distinct	
	intensities to be more like their neighbors.	
	(e) Quality of the picture depends on the number of pixels and the number of gray level that represent the picture.	
2 (a)	An image represented by 8 bit/pixel has following gray level distribution. Perform	10
` '	histogram equalization and give new distribution of gray level.	
	Gray Level 0 1 2 3 4 5 6 7	
	Number of pixels 128 75 280 416 635 1058 820 684	-
(b)	Explain Segmentation based on discontinuity and similarity	10
3 (a)	Obtain Huffman Code for the word 'COMMITTEE"	10
(b)	Explain Homomorphic filtering.	10
4(a)	What are the different types of redundancies in an image? Explain how they can be reduced / eliminated.	10
(b)	List any two properties of 2D DFT and prove any one of them.	10
5 (a)	Apply the following Image Enhancement techniques on the given Image.	10
	(i) Digital Negative (ii) Bit Plane Slicing (iii) Thresholding	
	2 1 3 7 4	
	4 5 2 0 1	
	3 5 1 4 6	
	0 4 0 2 3	
	2 1 6 1 4	
ļ		
(b)	Obtain the 4 Directional Chain code for the image shown below. Find first Difference and	10
(5)	circular first difference.	
	р • • • •	
	• • •	
	•——•	
6 (a)	For 2x2 transform A and the image U, Compute Transformed image V and the basis image	10
o (a)		. ,
	$A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, U = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$	
(b)	Give following masks of size 3×3 and explain their usefulness in image	10
	Processing. (i) Sobel (ii) Roberts (iii) Low-pass filter (iv) Prewitt (v) Laplacian.	
7	Write short notes (Any Four)	20
	(i) Dilation and erosion	
	(ii) Image Sampling (iii) JPEG	
	(iii) 37 EG (iv) Connectivity of pixels	
	(v) Filtering in Frequency domain	