Roll No.
Total No. of Pages : 03
Total No. of Questions: 09

MCA (2012-Batch) (Sem.-2nd)
 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Subject Code : MCA-201
 Paper ID : [B0133]

Time : 3 Hrs.

Max. Marks :100

INSTRUCTION TO CANDIDATES :

1. SECTIONS-A, B, C \& D contains TWO questions each carrying TWENTY marks each and students has to attempt any ONE question from each SECTION.
2. SECTION-E is COMPULSORY carrying TWENTY marks in all.
3. Use of non-programmable scientific calculator is allowed.

SECTION-A

ce between a simple and multigraph by giving an
(b) Define the chromatic number of a graph. Find the chromatic number of $\mathrm{K}_{m, n}$, the complete bipartite graph on m and n vertices respectively.
2. (a) A connected multigraph has an Euler circuit. Prove that each of its vertices has even degree.
(b) Define a Hamiltonian, circuit in a graph. Give an example of a graph which has a Hamiltonian circuit and an example of a graph which does not have a Hamiltonian circuit.

SECTION-B

3. (a) Draw the directed graph of the relation

$$
A=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}
$$

on the set $\{1,2,3,4\}$. Use this digraph to determine whether R is reflexive, symmetric and/or transitive.
(b) Define a countable set and an uncountable set. Prove that a countable set can not be equivalent to an uncountable set.
4. (a) Find the partition of the set of integers given by the equivalence relation congruent module 5 .
(b) State and prove De Morgan's laws for the two sets A and B.

SECTION-C

5. (a) Prove by the method of mathematical induction that $2^{n}<n$! for every positive integer $n \geq 4$.
(b) Prove that the propositions $p \vee(q \wedge r)$ and $(p \vee q) \wedge(p \vee r)$ are logically equivalent.
6. (a) Show that $(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow(p \rightarrow r)$ is a tantology.
(b) What are the negations of the statements. $\forall x\left(x^{2}>x\right)$ and $\exists x\left(x^{2}=2\right)$?

SECTION-D

dan method, find the. inverse of the matrix :
$A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$
(b) If $A=\left[\begin{array}{rrr}1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 3 & 4 \\ 1 & 2 & 3 \\ -1 & 1 & 2\end{array}\right]$,

Compute AB and BA and show that $\mathrm{AB} \neq \mathrm{BA}$.
8. (a) Determine the rank of the matrix :

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 4 & 2 \\
2 & 6 & 5
\end{array}\right]
$$

