USN

Fifth Semester B.E. Degree Examination, Dec.08/Jan.09 Formal Languages and Automata Theory

Time: 3 hrs.

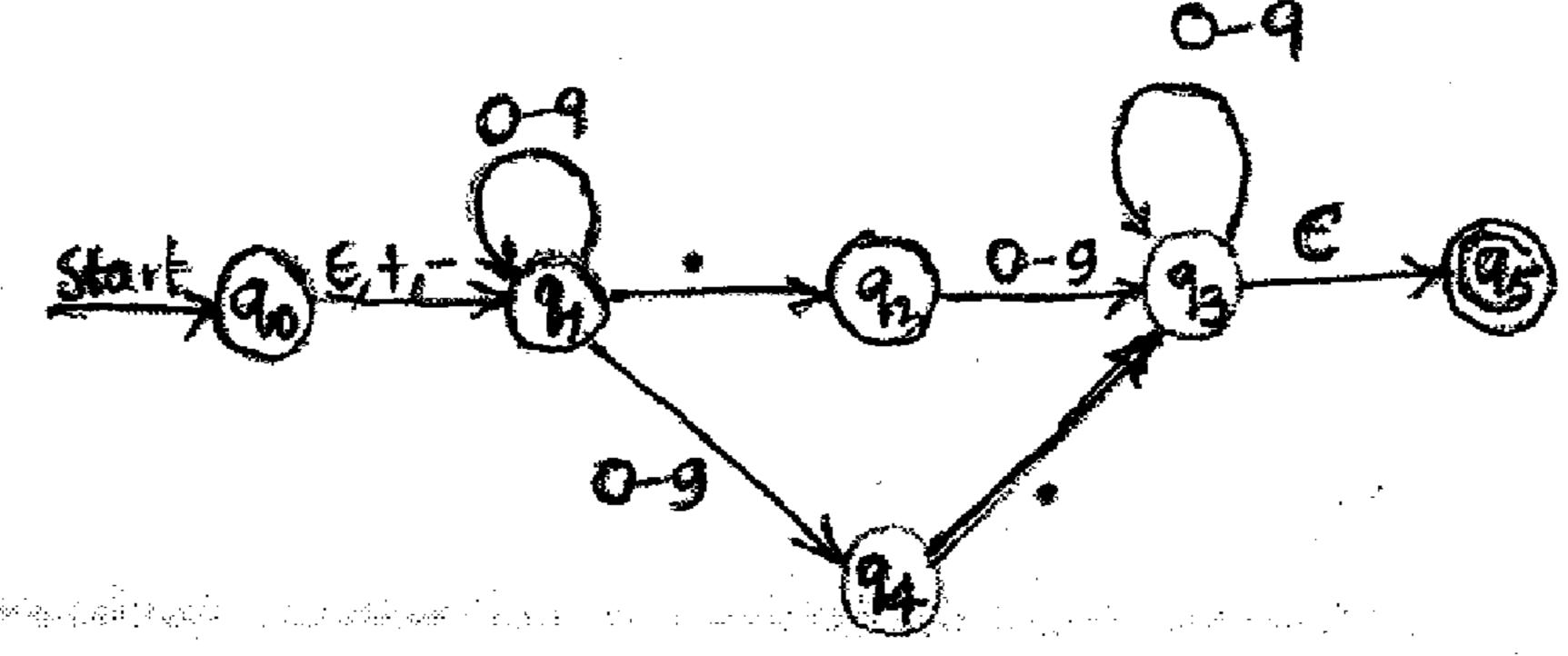
Max. Marks:100

Note: Answer any FIVE full questions selecting at least Two questions from each part.

PART - A

1 a. What is Automata? Discuss why study automata.

(06 Marks)


- b. Define DFA and design the DFA for the following languages on $\Sigma = \{a, b\}$.
- i) The set of all strings that either begings or ends or both with substring 'ab'.
 - ii) The set of all strings that ends with substring 'abb'.
 - iii) $L = \{W : |W| \mod 5 < > 0\}$

(08 Marks)

- c. Define \in NFA and design the E NFA or NFA for the following languages.
 - i) abc, abd, and aacd {Assume $\Sigma = a, b, c, d$ }
 - ii) {ab, abc}*
- {Assume $\Sigma = \{a, b, c\}$.

(06 Marks)

2 a. Convert the following ∈ I NFA to DFA using "Subset Construction scheme". (08 Marks)

- b. Define Regular expression and write Regular expression for the following languages.
 - i) $L = \{a^{2n} b^{2m+1} : m \ge 0, n \ge 0\}.$
 - ii) $L = \{a^n b^m : (m + n) \text{ is even}\}.$
 - iii) $L = \{a^n b^m : n > = 4, m < = 3\}.$

(06 Marks)

- c. Prove that every language defined by a Regular expression is also defined by Finite automata. (06 Marks)
- 3 a. If L_1 and L_2 are regular languages then prove that family of regular language are closed under $L_1 L_2$. (06 Marks)
 - b. State and prove pumping lemma for regular languages. Apply pumping lemma for following languages and prove that it is not Regular $L = \{a^n : n \text{ is prime}\}$. (08 Marks)
 - c. Consider the DFA

δ		0	1
\rightarrow	\mathbf{q}_{1}	\mathbf{q}_2	\mathbf{q}_3
•	\mathbf{q}_2	\mathbf{q}_3	q_5
*	\mathbf{q}_3	\mathbf{q}_{4}	\mathbf{q}_3
	\mathbf{q}_4	\mathbf{q}_3	\mathbf{q}_{5}
*	\mathbf{q}_{5}	\mathbf{q}_2	q ₅
ا و الله سهاي			

- i) Draw the table of distinguishable and Indistinguishable states for the automata.
- ii) Construct minimum state equivalent of automata.

(06 Marks)

- a. Define context-free grammer and write context free grammer for the following languages.
 - i) $L = \{a^i b^j c^k : i + j = k, i > = 0, j > = 0\}.$
 - ii) $L = \{a^n b^m c^k : n + 2m = k\}.$

(07 Marks)

Consider the grammer.

$$E \rightarrow +EE * EE - EE x y$$

Find leftmost and rightmost derivation for the string +*-xyxy and write parse tree.

(08 Marks)

c. What is ambigous grammer? Prove that the following grammer is ambigous on the string "aab" $S \rightarrow as | asbs | \in$. (05 Marks)

PART - B

- a. Define PDA and construct a PDA that accepts the following languages.
 - $L = \{w : w \in (a + b)^* \text{ and } n_a(w) = n_b(w)\}$. Write the instantaneous description for the string "aababb". (12 Marks)
 - b. For the following grammer construct a PDA.
 - $S \rightarrow aABB \mid aAA$
 - $A \rightarrow aBB$
 - $B \rightarrow bBB \mid A$
 - $C \rightarrow a$.

(08 Marks)

- a. Consider the grammer.
 - $S \rightarrow ABC \mid BaB$
 - $A \rightarrow aA \mid BaC \mid aaa$
 - $B \rightarrow bBb \mid a \mid D$
 - $C \rightarrow CA \mid AC$
 - $D \rightarrow \in$
 - i) Eliminate t productions.
 - ii) Eliminate Unit productions in the resulting grammer.
 - iii) Eliminate Useless production in the resulting grammer. (09 Marks)
 - What is Chomsky normal form? Convert the following grammer b Chomsky normal form. $S \rightarrow ABa$
 - $A \rightarrow aab$
 - $B \rightarrow Ac$.

(05 Marks)

- c. If L₁ and L₂ are context free languages then prove that family of Context-free-languages are closed under Union and concatenation operations. (06 Marks)
- Explain with neat diagram, the working of a Turning machine model. (06 Marks)
 - b. Design a Turing Machine to accept all set of palindromes over {0, 1}*. Also write its transition diagram and Instantaneous description on the string "1 0 1 0 1". (14Marks)
- Write short notes on following:
 - Post's correspondence problem.
 - Recursive languages.
 - iii) Universal Turning Machine.
 - iv) Pumping lemma for CFL.

(20 Marks)