FACULTY OF ENGINEERING

B.E. 2/4 (Civil) II-Semester (Main) Examination, April / May 2013

Subject : Fluid Mechanics - I

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions of Part - A and answer any five questions from Part-B.

> PART - A (25 Marks)

1. Differentiate between notch and weir.
2. What is hydrostatic variation of pressure force?
3. Define momentum correction factor.
4. What do you mean by velocity of approach in a notch?
5. Define temporal acceleration.
6. Darcy-Weisbach equation can be used only for turbulent flows-yourcomment.
7. What is meant by lower critical Reynolds number in pipe flows?
8. Define Stream function and velocity potential.
9. What is Mach cone?
10. What is an equivalent pipe?

PART - B (5x10=50 Marks)
11.(a) Derive the expression for variation of pressure in a static fluid.
(b) A hydraulic lift consists of a 28 cm diameter ram which slides in a 28.015 cm diameter cylinder, the annular space being filled with oil having kinematic viscosity of $0.025 \mathrm{~cm}^{2} / \mathrm{s}$ and specific gravity 0.85 . If the rate of travel of the ram is $10.15 \mathrm{~m} / \mathrm{min}$, find the frictional resistance when 3.25 m of the ram is engaged in the cylinder.
12.(a) Derive Bernoulli's equation from Euler's equation of motion clearly stating the assumptions involved.
(b) A pipe bend tapers in the direction of flow from a diameter of 500 mm to a diameter of 250 mm and turns through 450 in the horizontal plane. The pressure at inlet is 40 kPa . If the pipe is conveying oil of specific gravity of 0.85 , find the magnitude and direction of the resultant force on the bed when the oil flows at a rate of 150 litres / s.
13.(a) Derive the expression for discharge through a Venturimeter fitted to an inclined pipe line.
(b) In an experiment on a $90^{\circ} \mathrm{V}$-notch the flow is collected in vertical cylindrical tank 0.9 m diameter. It is found that the depth of water in the tank increases by 0.65 m in 16.8 s when the head over the notch is 0.2 m . Determine the coefficient of discharge through the notch.
14.(a) Derive the equation for velocity of pressure wave or elastic wave in a compressible fluid.
(b) Air is flowing through a pipe with a velocity of $285 \mathrm{~m} / \mathrm{s}$ where its pressure temperature are 0.6 bar (absolute) and 300K. The pipe along the flow changes in diameter and its pressure at that section is 0.9 bar (absolute). Taking Y as 1.4 and R as $287 \mathrm{Nm} / \mathrm{kg} 0 \mathrm{~K}$, and assuming the adiabatic flow, find the velocity of flow at this section.
15.(a) Explain the concept of equivalent pipe and generate the relevant expression.
(b) Oil of viscosity $0.1 \mathrm{~Pa}-\mathrm{s}$ and specific gravity 0.9 , flows through a horizontal pipe of 25 mm diameter. If the pressure drop per metre length of the pipe is 12 kPa , determine (i) the rate of flow in $\mathrm{N} / \mathrm{min}$ (ii) the shear stress at the pipe wall (iii) the Reynolds number of the flow (iv) the power required per 50 m length of pipe to maintain flow.
16.(a) Derive the expression for loss of energy due to sudden contraction in a circular pipe. (5)
(b) Oil of specific gravity 0.9 flows in a 300 mm diameter at the rate of 120 litres per second and the pressure at a point A is 24.525 kPa . If the point A is 5.2 m above the datum line, calculate the total energy at point A in terms of meters of oil.
17. Write short notes on the following:
(a) Rotameter
(b) Pascal's Law
(c) Vapour pressure

