	UTI	P7-RM-6	
n	220	P7-RM-6 P7-RM-6 P7-RM-6 P7-RM-6 P7-RM-6 P7-RM-6 LJ-10	448
/11	. 002	26.11.13	440
		(3 Hours) [Total Marks:	100
N.B.) Question no. 1 is compulsory.	
	(2)	Answer any four questions out of remaining six questions.	
1.	(a)	Find fourier exansion of $f(x) = 4-x^2$ in the ingterval $(0, 2)$	5
	(b)	Find the probability that atmost 5 defective fuses will be found in a box of 200	5
		fuses if experience shows that 2% of such fuses are defective.	
	(c)	Given $6y = 5x + 90$, $15x = 18y + 130$, $6x^2 = 16$. Find	5
		(i) $\frac{1}{x}$ and $\frac{1}{y}$ (ii) rand (iii) $6y^2$	
		Solve the two dimensional heat equation $\frac{d^2u}{dx^2} + \frac{d^2u}{dy^2} = 0$ which satisfies the conditions	
	(d)	Solve the two dimensional heat equation $dx^2 dy^2$ which satisfies the conditions	5
		$u(0,y)=u(\ell,y)=u(x,0)=0$ and $u(x,a)=\sin\frac{n\pi x}{\ell}$.	
		$u(0,y)=u(x,0)=0$ and $u(x,a)=\sin\frac{1}{\ell}$.	
2.	(a)	Obtain fourier series for $f(x) = x - x^2$, $-\pi < x < \pi$ Hence deduce that	7
		$\frac{\pi^2}{12} = \frac{1}{12} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	
	(b)	1 2 3 4	7
	(0)	show three or five?	
	(c)	A continuous random variable X has p.d.f. $f(x) = kx^2 e^{-x}$, $x \ge 0$. Find K, mean and	6
		variance.	
3.	(a)	Using normal distribution find the probability that in a group of 100 persons there	7
		will be 55 males assuming that the probability of a person being male is $\frac{1}{2}$.	
	(b)	Derive wave equation for vibration of string	7
	(c)	Obtain fourier expansion of $f(x) = \sin x$ in the interval $(-\ell, \ell)$ where a is not an	6
		integer.	
4.	(a)	Calculate correlation coefficient from the foll: data	7
		x : 23 27 28 29 30 31 33 35 36 39	
		y: 18 22 23 24 25 26 28 29 30 32	
	(b)	A die was thrown 132 times and the foll: frequencies were observed:	7
		No. obtained : 1 2 3 4 5 6	
		Frequency: 15 20 25 15 29 28	

Test the hypothesis that the die is unbiased.

[TURN OVER

(c) Obtain complex form of fourier series for $f(x) = \cosh 3x + \sinh 3x$ in (-3, 3).

6

7

6

7

6

- (a) A homogeneous rod of conducting material of length ℓ has ends kept at zero temperature
 and the temperature at the centre is T and falls uniformly to zero at the two ends.
 Find the temperature u(x, t) at any time.
 - (b) Obtain half range sine series for f(x) when

 $f(x) = x, \qquad 0 < x < \frac{\pi}{2}$

 $= \pi - x$, $\frac{\pi}{2} < x < \pi$ Hence deduce $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$

(c) Two independent samples of sizes 8 and 7 gave the foll: results

Sample 1: 19 17 15 21 16 18 16 14

Sample 2 : 15 14 15 19 15 18 16

is the difference between the sample means significant?

6. (a) Find the expansion of $f(x) = x(\pi - x)$, $0 < x < \pi$ as a half range cosine series. 7

Hence S. T

(i) $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$ (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \frac{\pi^2}{12}$

- (b) The diameter of a semicircular plate of radius a is kept at 0° C and the temperature at the semicircular boundary is T° C. Find the steady state temperature $u(r, \theta)$.
- (c) The average of marks scored by 32 boys is 72 with standard deviation 8 while that of 36 girls is 70 with standard deviation 6. Test at 1% level of significance. Whether the boys perform better than the girls?
- 7. (a) S. T the functions $f_1(x) = 1$, $f_2(x) = x$ are orthogonal on (-1, 1). Determine the constants a and b such that the function $f_3(x) = -1 + ax + bx^2$ is orthogonal to both f_1 and f_2 on that internal.
 - (b) Find fourier integral representation of

f(x) = x, 0 < x < a= 0, x > a, f(-x) = f(x)

(c) If u = x-y, v = x+y and if x, y are uncorrelated,

P.T r uv = $\frac{6x^2 - 6y^2}{6x^2 + 6y^2}$