AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

CSE 422
Real Time Operating System

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Real-Time Scheduling

e Real-Time Scheduling is designed to ensure that tasks are
executed in a predictable and timely manner, with minimal delay or
latency.

e The scheduler assigns priorities to tasks based on their importance
and urgency and allocates system resources accordingly to ensure
that critical tasks are executed on time.

Real-time scheduling can be classified into two categories: hard
real-time scheduling and soft real-time scheduling.

1. Hard real-time scheduling requires that tasks are completed
within a specific deadline, and any delay can result in system
failure or loss of data.

2. Soft real-time scheduling, on the other hand, allows for some
degree of delay but still requires that tasks are completed within a
reasonable timeframe.

Common Approaches to Real-Time Scheduling: There are several
common approaches to real-time scheduling that are used to ensure that
tasks are executed in a timely and efficient manner.

&%&ETYY Amity University Jharkhand, Ranchi

These approaches include

1. Clock-Driven Approach:

e The Clock Driven approach is a real-time scheduling technique that
uses a fixed clock to divide time into equal intervals and assigns
tasks to each interval based on their deadline and priority.

e In this approach, tasks are assigned to a fixed time slot, and the
scheduler ensures that each task is executed within its allocated
time slot.

e If a task misses its deadline, it is either rescheduled or dropped,
depending on the criticality of the task.

e The Clock Driven approach is helpful in systems that have a high
degree of predictability and where tasks have fixed execution
times.

e It is commonly used in embedded systems, where tasks are
executed in a deterministic and predictable manner.

e One advantage of the Clock Driven approach is that it provides a
simple and efficient way to allocate system resources, as tasks are
scheduled based on their priority and deadline.

e it can be less flexible than other scheduling techniques, as it
assumes that all tasks have fixed execution times and cannot adapt

to changing system conditions.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Here's an example of how clock-driven scheduling works:

Execution Task A Task(B) Task(C)
Time (c)

0 ms

10 ms A

20 ms B

30 ms C
40 ms A

50 ms B

60 ms C
70 ms A

80 ms B

90 ms C
100 ms A

&%&EX{ Amity University Jharkhand, Ranchi

In this example,
e The system clock is divided into time slots of 10 ms, and three

tasks, A, B, and C, are scheduled to run.
o Task A is assigned the first time slot, task B is assigned the second

time slot, and task C is assigned the third time slot.

At time 0 ms, no tasks are running.
At time 10 ms, task A starts running and continues until the end of

its time slot at 20 ms.
e At time 20 ms, task B starts running and continues until the end of
its time slot at 30 ms.

o At time 30 ms, task C starts running and continues until the end of

its time slot at 40 ms.
e The process repeats until all tasks have completed their execution.

%{SII‘,X Amity University Jharkhand, Ranchi

2. Weighted Round Robin (WRR):
e Weighted Round Robin (WRR) is a real-time scheduling algorithm
that is an extension of the Round Robin approach.
¢ In this approach, tasks are assigned a weight value that determines
the amount of CPU time they receive during each round.
e Tasks with higher weight values are allocated more CPU time than
tasks with lower weight values.

Here is an example diagram of the weighted round-robin approach:

Task A: weight 3, requires 15 ms to complete
Task B: weight 2, requires 10 ms to complete
Taak C: weight 1, requires 5 ma to complete

AMITY

Amity University Jharkhand, Ranchi

UNIVERSITY
Execution Time (C) Task A Task B Task C
0-5ms A

5-10ms B

10 -15ms CJc
15 -20 ms A -

20 -25 ms B -

25 -30 ms A - -

e At time 0 ms, the scheduler starts with Task A since it has the
highest weight.

e Task A is executed for the first time quantum of 5 ms, until time 5
ms.

e Since Task A has not been completed, it is moved to the end of the
queue, and the scheduler switches to Task B, which is executed for
the next time quantum of 5 ms, until time 10 ms.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

e Since Task B has not been completed, it is moved to the end of the
queue, and the scheduler switches to Task C, which is executed for
the next time quantum of 5 ms, until 15 ms.

e Since Task C has been completed, it is removed from the schedule
and the scheduler switches back to Task A, which is executed for
the next time quantum of 5 ms, until time 20 ms.

e Since Task A has not been completed, it is moved to the end of the
queue, and the scheduler switches back to Task B, which 1is
executed for the next time quantum of 5 ms, until time 25 ms.

¢ Since Task B has been completed, it is removed from the schedule,
and the scheduler switches back to Task A, which is executed for
the final time quantum of 5 ms, until time 30 ms.

&%gg Amity University Jharkhand, Ranchi

Priority-Driven Approach:

® The priority-driven approach is a real-time scheduling algorithm that assigns
a priority to each task, based on its importance or urgency.

e The scheduler then schedules tasks based on their priority, with higher-
priority tasks being executed before lower-priority tasks

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Here is an example of the priority-driven approach:

Task A: priority 1, requires 20 ms to complete
Task B: priority 2, requires 15 ms to complete
Task C: priority 3, requires 10 ms to complete

Task A Task B Task C
20 ms 15 ms 10 ms
0-20 20-35 35-45

e At time 0 ms, the scheduler starts with Task A since it has the
highest priority.

o Task A is executed until it completes at 20 ms.

e Since Task A has been completed, the scheduler switches to Task B,
which is the next highest priority task.

e Task B is executed until it completes at 35 ms.

o Finally, the scheduler switches to Task C, which is the
lowest-priority task.

e Task C is executed until it completes at 45 ms.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

The EffectiveDeadlineFirst (EDF) algorithm:

¢« The Effective Deadline First (EDF) algorithm 1s a real-time
scheduling algorithm that schedules tasks based on their deadline.

¢ The task with the earliest deadline is given the highest priority and
1s scheduled first.

e This algorithm ensures that tasks with the shortest deadlines are
executed first, which can help to meet critical timing requirements
in real-time systems.

Here's an example of how the EDF algorithm works:

Task A: deadline 5 ms, requires 10 ms to complete
Task B: deadline 3 ms, requires 5 ms to complete
Task C: deadline 7 ms, requires 15 ms to complete

AMITY

UNIVERSITY

Amity University Jharkhand, Ranchi

Execution Time (C) Task A Task B Task C
0-5ms B
Hh-15ms A
15 - 30 ms C

At time 0 ms, the scheduler starts with Task B since it has the earliest

deadline.

® Task B is executed until it completes at 5 ms.

® Since Task B has been completed, the scheduler switches to Task A,

which has the next earliest deadline.

® Task A is executed until it completes at 15 ms.
e Finally, the scheduler switches to Task C, which has the latest deadline.

Task C is executed until it completes at 30 ms.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Least-Slack-Time-First (LST) Algorithms:

e Least-Slack-Time-First (LST) is a real-time scheduling algorithm
that is used to optimize the scheduling of tasks based on their
deadlines and processing times.

e LS5ST chooses the task with the least slack time as the next task to be
executed.

e Slack time is defined as the difference between a task's deadline
and the time remaining until the task must be completed.

o For example, if a task has a deadline of 100ms and has already been
running for 80ms, then its slack time is 20ms (i.e., the difference
between 100ms and 80ms).

The LST algorithm works as follows:

1. Initialize the slack time for all tasks in the system.

2. Select the task with the smallest slack time as the next task to be
executed.

3. Execute the selected task for the remaining slack time.

4. Recalculate the slack time for all tasks that have not been
completed.

5. Repeat steps 2-4 until all tasks have been completed.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Here's an example of how the LST algorithm works:

Task A: deadline 50 ms, requires 20 ms to complete
Task B: deadline 30 ms, requires 15 ms to complete
Task C: deadline 40 ms, requires 10 ms to complete

Execution Time (C) Task A Task B Task C
0-15ms B
15 - 25 ms C
25 - 45 ms A

o At time 0 ms, all tasks are ready to be executed, so the scheduler
selects the task with the smallest slack time, which is Task B.
Task B is executed until it completes at 15 ms.
At 15 ms, the scheduler checks the slack times of the remaining
tasks.

e Task A has a slack time of 35 ms, and Task C has a slack time of 25
ms.

e Since Task C has the smallest slack time, it is given the highest
priority and is executed next.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

o Task C is executed until it completes at 25 ms.
e« Finally, the scheduler switches to Task A, which has the largest
slack time.

e Task A is executed until it completes at 45 ms.

AMITY

UNIVEPSr™ Amity University Jharkhand, Ranchi
EffectiveDeadlineFirst (EDF) Vs Least-Slack-Time-First (LST)
Algorithms:

Feature EDF LST
Definition Prioritizes tasks based | Prioritizes tasks based on
on their relative (the amount of time
deadlines. remaining until their
deadlines.
Type of | Preemptive Preemptive
scheduling
Algorithm Moderate Moderate
complexity
Real-time Suitable for hard | Suitable for Soft real-time
systems real-time systems systems
Deadline Each task must have a [Each task must have a
Requirement |deadline specified. deadline specified.
Selection Tasks with the earliest | Tasks with the least slack
Criteria deadlines are given |time (time remaining until
priority. the deadline) are given
priority.
Utilization is Better for | Better for low utilization
high-utilization systems. |systems.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Rate Monotonic Algorithm:

o The Rate Monotonic (RM) algorithm is a real-time scheduling
algorithm that assigns priorities to tasks based on their periods,
with shorter-period tasks having higher priority.

o This algorithm assumes that the tasks are periodic and that their
execution times are constant and known in advance.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Here's an example of how the RM algorithm works:

Task A: period 50 ms, requires 20 ms to complete
Task B: period 30 ms, requires 15 ms to complete
Task C: period 40 ms, requires 10 ms to complete

Execution Time (C) Task A Task B Task C
0-15ms B
15 - 25 ms Cx
25 - 4b ms A

e At time 0 ms, all tasks are ready to be executed, so the scheduler
selects the task with the highest priority, which is Task B.

e Task B is executed until it completes at 15 ms.

e At 15 ms, the scheduler checks which task is ready to be executed
next.

e Since Task C has a period of 40 ms, it is prepared to be executed
next.

e Task C is executed until it completes at 25 ms.

o At 25 ms, the scheduler checks which task is prepared to be
executed next.

e Since Task A has a period of 50 ms, it is prepared to be executed
next.

e Task A is executed until it completes at 45 ms.

The scheduler then repeats the cycle, executing the tasks in the order
of priority.

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

AMITY

UNIVERSITY Amity University Jharkhand, Ranchi

Thank You!

