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(c) power factor of the generator (leading power factor operation is more prob-
lematic than lagging power factor operation)

(d) AVR gain.

A cost efficient and satisfactory solution to the problem of oscillatory
instability is to provide damping for generator rotor oscillations. This is con-
veniently done by providing Power System Stabilizers (PSS) which are supple-
mentary controllers in the excitation systems. The signal V; in Fig. 8.1 is the
output from PSS which has input signal derived from rotor velocity, frequency,
electrical power or a combination of these variables. The objective of designing
PSS is to provide additional damping torque without affecting the synchronizing
torque at critical oscillation frequencies {3].

PSS have been used for over 20 years in Western systems of United States
of America and in Ontario Hydro. In United Kingdom, PSS have been used in
Scotland to damp oscillations in tie lines connecting Scotland and England [8].
It can be generally said that need for PSS will be felt in situations when power
has to be transmitted over long distances with weak AC ties. Even when PSS
may not be required under normal operating conditions, they allow satisfactory
operation under unusual or abnormal conditions which may be encountered at
times. Thus, PSS has become a standard option with modern static exciters and
it is essential for power engineers to use these effectively. Retrofitting of existing
excitation systems with PSS may also be required to improve system stability.

This chapter presents the various aspects for the application of PSS
with emphasis on the tuning procedures. The coverage includes not only on
the current practices but also on recent developments and future trends. The
stabilization through SVC and HVDC controllers are also discussed.

8.2 Basic concepts in applying PSS

A brief review of the basic concepts of stabilization is undertaken here. The
power system, in general, is described by a set of nonlinear differential and
algebraic equations. These can be expressed as

PX =F(X, 2), p=" (8.1)
Y = H(X, 2) (8.2)
0=G(Y, Z) (8.3)

The oscillatory instability can be viewed as stability of the operating point,
subjected to small, random perturbations which are always present. The analysis



260 Power System Dynamics - Stability and Control

can be performed by linearizing the system equations around the operating point
(X =X,, Y=Y, Z=2,). Here X are the state variables, Y represent active
and reactive power injections (at buses), Z represent voltage magnitudes and
angles at various buses.

Expressing
X=X, +AX, Y=Y, +AY, Z=2Z,+AZ (8.4)

it is possible to obtain the following equation

pAX = [A]AX (8.5)
where .
OF OF (0GOH 0G\~" 0GOH
A= [5}2 ~ 3z oy 52 * 52) Wﬁ] (8.5)

It is to be noted that the elements of A are functions of the operating point.

The stability of the operating point can be judged by the location of the
eigenvalues of the matrix A. If all the real parts of the eigenvalues are negative,
the system is stable. If one or more has positive real part, then the system
is unstable. While this criterion of stability is valid for very small perturba-
tions (which may not be true in practice), it is interesting to note that several
analytical studies [5, 6, 7] show excellent correlation between theory and field
tests. The criterion indicates problem areas but cannot provide estimates for
amplitudes of the oscillation observed.

To give more insight into the problem, we can take up a multi-machine
system where generators are modelled by the ‘classical’ model, neglecting flux
decay, saliency, damper windings and governor effects. In this case, the lin-
earized system equations can be written as

[M]p?Ad = —[K]AéS (8.7)

2H;
wB
7% synchronous machine). K;; = 0P /04;, where Pe; is the power output of
i*" machine, d; is the rotor angle of 4" machine referred to a rotating reference
frame (with the operating speed w,). If the network can be reduced by retaining
only the internal buses of the generators and the losses in the reduced network
can be neglected,

where [M] is diagonal matrix with M;; = (Hj is the inertia constant of

K;; = % cos(d; — 6;) ~

1
— 8.8
X;j Xy 8.8)
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where X;; is the reactance of the element connecting the generator buses i and
j. E; and F; are the generator voltages. The approximation assumes that the
voltages are around 1.0 pu. and the bus angle difference (in steady-state) are
small. The matrix [K] is singular and has rank < (m —'1) where m is the size of
K (also equal to the number of generators). This enables the reduction of the
number of angle variables by one by treating relative angles (with respect to a
reference machine which can be chosen as the first machine) as state variables.

The solution of equation (8.7) can, in general, be expressed as

m—1
AP = Z Vj(cj cos wit + dj sinw;t) (8.9)
J=1

where A§ft = [Ab21 Ads;.....Adp, ] is the vector of relative angles (Ad;

= Ad; — Ady), ¢1,-..4 Cm-1, di, do,..., dp-1 are scalars depending on the
initial conditions, V|, Vi,_; are vectors. The structure of a vector V; depicts the
participation of various machines in the oscillation mode whose frequency is w;.
It is to be noted that for a ‘m’ machine system, there are (m — 1) oscillatory
modes whose frequency varies in the range of (0.2 to 3 Hz). The frequencies

are obtained as square roots of the non-zero and real eigenvalues of the matrix
[M]~[K].

In a practical system, the various modes (of oscillation) can be grouped
into 3 broad categories [9].

A. Intra-plant modes in which only the generators in a power plant partici-
pate. The oscillation frequencies are generally high in the range of 1.5 to
3.0 Hz.

B. Local modes in which several generators in an area participate. The fre-
quencies of oscillations are in the range of 0.8 to 1.8 Hz.

C. Inter area modes in which generators over an extensive area participate.
The oscillation frequencies are low and in the range of 0.2 to 0.5 Hz.

The above categorization can be illustrated with the help of a system
consisting of two areas connected by a weak AC tie (see Fig. 8.3). Area 2 is
represented by a single generator G4. The area 1 contains 3 generators G, Ga,
and G3. The generators G; and G4 are connected in parallel and participate
in the intra-plant oscillations which have higher frequency due to the lower
reactance between the two machines and also smaller inertias. In local mode
oscillation, G; and G2 swing together and against G'3. In oscillations due to inter
area mode, all generators G; to G4 participate and have the lowest frequency.
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Figure 8.3: A sample power system

It is to be noted that the distinction between local modes and inter area
modes applies mainly for those systems which can be divided into distinct areas
which are separated by long distances. For systems in which the generating
stations are distributed uniformly over a geographic area, it would be difficult
to distinguish between local and inter area modes from physical conciderations.
However, a common observation is that the inter area modes have the lowest
frequency and highest participation from the generators in the system spread
over a wide geographic area.

The PSS are designed mainly to stabilize local and inter area modes.
However, care must be taken to avoid unfavourable interaction with intra-plant
modes [10] or introduce new modes which can become unstable.

Depending on the system configuration, the objective of PSS can differ.
In Western U.S.A, PSS are mainly used to damp inter area modes without
jeopardizing the stability of local modes. In other systems such as Ontario
Hydro, the local modes were the major concern. In general, however, PSS must
be designed to damp both types of modes. The procedures for tuning of PSS
depend on the type of applications.

If the local mode of oscillation is of major concern (particularly for the
case of a generating station transmitting power over long distances to a load
centre) the analysis of the problem can be simplified by considering the model of
a single machine (the generating station is represented by an equivalent machine)
connected to an infinite bus (SMIB). With a simplified machine model (1.0}, and
the excitation system, the analysis can be carried out using the block diagram
representation given in Chapter 7. The instability arises due to the negative
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damping torque caused by fast acting exciter under operating conditions that
lead to K5 < 0. The objective of PSS is to introduce additional damping torque
without affecting the synchronizing torque.

8.3 Control Signals

The obvious control signal (to be used as input to the PSS) is the deviation
in the rotor velocity. However, for practical implementation, other signals such
as bus frequency [11}, electrical power [9], accelerating power {12, 13] are also
used. The latter signal is actually synthesized by a combination of electrical and
mechanical power signals. The mechanical power signal can be obtained from
the gate position in a hydraulic turbine or steam pressures in steam turbine.
Nevertheless, it is difficult to measure mechanical power. It can be argued that
if mechanical power variations are slow, then a signal derived from the electrical
power approximates accelerating power. However, this can pose problem during
rapid increases of generation for which PSS action leads to depression in the
voltage, endangering security.

A recent development is to synthesize accelerating power signal from
speed and electrical power signals. This is shown in Fig. 8.4 [13]. A similar
approach is used at Ontario Hydro and the PSS utilizing these signals are termed
as Delta-P-Omega stabilizers [14]. It is claimed that the new control signal has
eliminated the problem of torsional interactions and improved reliability.
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Figure 8.4: Synthesis of accelerating power signal
The choice of control signal for PSS can be based on the following criteria

(a) The signal must be obtained from local measurements and easily synthe-
sized.

(b) The noise content of the signal must be minimal. Otherwise complicated
filters are required which can introduce their own problems.



264 Power System Dynamics - Stability and Control

(¢) The PSS design based on a particular signal must be robust and reject
noise. This implies that lead compensation must be kept to a minimum
to avoid amplifying the noise.

All the control signals considered- rotor speed, frequency, electrical power
are locally available. The speed signal can be obtained from a transducer using
a tooth wheel mounted on the shaft. Alternately it can be obtained from the
angle of the internal voltage which can be synthesized. The bus frequency signal
can be obtained by measuring the period using zero crossing detection. The
power signal can be derived from a Hall effect transducer.

The speed signal is inherently sensitive to the presence of torsional os-
cillations at frequencies in the range of 8 to 20 Hz. This can lead to negative
damping of the torsional mode [15]. An initial solution to this problem was inge-
nious - to relocate the speed pick up at the node of the first torsional frequency.
However, this was npt a general solution (for example in 4 pole nuclear units
in Ontario Hydro, the node of the first torsional mode of oscillation is located
inside the turbine casing and hence inaccessible). A practical solution is to pro-
vide a torsional filter tuned to the frequency of the critical mode. However, this
filter introduces another mode of oscillation, the damping of which reduces with
increasing stabilizer gain [16].

Speed signal can also lead to negative damping of intra-plant modes if
the PSS is not properly designed. In reference [10], the average speed instead
of individual speed is suggested as a suitable control signal in a plant whenever
more than one unit operate.

The frequency signal is insensitive to intra-plant modes and hence there
is no danger of destabilising intra-plant modes. The frequency signal is also less
sensitive to torsional frequency components. However, the frequency signal is
prone to noise caused by nearby loads such as arc furnaces [6, 10].

The acceleration signal (based on accelerating power) results in mini-
mum lead compensation requirements. The signal is also insensitive to torsional
modes. Both these factors imply that torsional filters may be dispensed with
completely or their design simplified.

8.4 Structure and tuning of PSS

The block diagram of the PSS used in industry is shown in Fig. 8.5. It consists
of a washout circuit, dynamic compensator, torsional filter and limiter. The
function of each of the components of PSS with guidelines for the selection of
parameters (tuning) are given next.
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Figure 8.5: Block diagram of PSS

It is to be noted that the major objective of providing PSS is to in-
crease the power transfer in the network, which would otherwise be limited by
oscillatory instability. The PSS must also function properly when the system is
subjected to large disturbances.

8.4.1 Washout Circuit

The washout circuit is provided to eliminate steady-state bias in the output of
PSS which will modify the generator terminal voltage. The PSS is expected to
respond only to transient variations in the input signal (say rotor speed) and
not to the dc offsets in the signal. This is achieved by subtracting from it the
low frequency components of the signal obtained by passing the signal through
a low pass filter (see Fig. 8.6).
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Figure 8.6: Washout circuit

The washout circuit acts essentially ag a high pass filter and it must pass
all frequencies that are of interest. If only the local modes are of interest, the
time constant Ty can be chosen in the range of 1 to 2. However, if inter area
modes are also to be damped, then Ty must be chosen in the range of 10 to 20.
A recent study [1] has shown that a value of Ty = 10 is necessary to improve
damping of the inter area modes. There is also a noticeable improvement in the
first swing stability when Ty is increased from 1.5 to 10. The higher value of
Tw also improved the overall terminal voltage response during system islanding
conditions.
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8.4.2 Dynamic Compensator

The dynamic compensator used in industry is made up to two lead-lag stages
and has the following transfer function

| Ky(1+ sT1)(L + sT3)
) = I am) (1T oTh)

where K is the gain of PSS and the time constants, 77 to Ty are chosen to
provide a phase lead for the input signal in the range of frequencies that are of
interest (0.1 to 3.0 Hz). With static exciters, only one lead-lag stage may be
adequate. In general, the dynamic compensator can be chosen with the following
transfer function

(8.10)

N(s)
T(s) = =272 8.11
© =50 (8.11)
where
N(s) = 1l+4a1s+ags® +...aps?
D(s) = 1+bys+bos®+...bps"

The zeros of D(s) should lie in the left half plane. They can be complex or
real. Some of the zeros of N(s) can lie in the right half plane making it a
non-minimum phase.

For design purposes, the PSS transfer function is approximated to T'(s),
- the transfer function of the dynamic compensator. The effect of the washout
circuit and torsional filter may be neglected in the design but must be considered
in evaluating performance of PSS under various operating conditions.

There are two design criteria.

1. The time constants, 7} to Ty in equation (8.10) are to be chosen from the
requirements of the phase compensation to achieve damping torque

2. The gain of PSS is to be chosen to provide adequate damping of all critical
modes under various operating conditions. It is to be noted that PSS is
tuned at a particular operating condition (full load conditions with strong
or weak AC system) which is most critical. Although PSS may be tuned
to give optimum damping under such condition, the performance will not
be optimal under other conditions. The critical modes include not only
local and inter area modes, but other modes (termed as control or exciter
modes) introduced by exciter and/or torsional filter.

The basis for the choice of the time constants of the dynamic compen-
sator can be explained with reference to the block diagram of the single machine
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Ko [

| GEP(s) [=— PSS(s) =
AV

Figure 8.7: Stabilizer with speed input: system block diagram

system when PSS is included (see Fig. 8.7). If PSS is to provide pure damping
torque at all frequencies, ideally the phase characteristics of PSS must balance
the phase characteristics of GEP at all frequencies. As this is not practical, the
following criteria are chosen to design the phase compensation for PSS.

(a) The compensated phase lag (phase of P(s) = GEP(s) PSS(s)) should pass
through 90° at frequency around 3.5 Hz (For frequency input signal this
can be reduced to 2.0 Hz).

(b) The compensated phase lag at local mode frequency should be below 45°,
preferably near 20°

(¢) The gain of the compensator at high frequencies (this is proportional to
T1T3/T5Ty) should be minimized.

The first criterion is important ta avoid destabilization of intra-plant
modes with higher frequencies. It is also preferable to have the compensated
phase to be lagging at inter area modes so that PSS provides some synchronizing
torque at these frequencies. The time constant of the washout circuit can also
affect the compensated phase lag. The third criterion is required to minimize
the noise amplification through PSS.

The plots of the phase angle ¢ of the compensator of Eq. (8.10), with
variation in frequency are shown in Fig. 8.8 for different values of the centre
frequency f. defined by

1 1
= — 8.12



268 Power System Dynamics - Stability and Control

It is assumed that

n_T_,
T, Ty

The plots of Fig. 8.8 (a) are obtained for n = 10. Fig. 8.8 (b) shows similar
plots, but for n = 2. Since the two lead-lag stages are assumed to be identical,
the phase angle ¢ is twice that for a single stage. The figure 8.8 shows the phase

angle (5) corresponding to a single stage.

100 60 -
g0l
50
80
7or 40+
sol
1al =2 =5 4 _4p
~ g ‘ o
> 50 330
40
20-
30
2o 10+
10}
o] L L 0
10" 10° 10' 10° 10° 10"
Radian Frequency Radtan Frequency
(a) n=10 (b) n=2

Figure 8.8: Variation of phase angle of compensator

The results given in Fig. 8.8 show that the peak value of the phase
lead provided by the compensator occurs at the centre frequency (f.). Also,
increasing n increases the phase lead. Depending on the phase compensation
required, f. and n can be selected. A single stage of lead-lag network is adequate
whenever the requirements of the phase lead are moderate.

The determination of the ‘plant’ transfer function can be done analyt-
ically or experimentally from field tests. In the former case, GEP(s) can be
obtained from the fact that

AT,

GEP(s)= AVl Am =0

(8.13)

where V; is the output of the PSS. The condition A@ = 0, can be enforced by
selecting arbitrarily very high values of inertias and calculating the frequency
response over a range of frequencies. There are computer programs to compute
eigenvalues or frequency response for a large system [17-19].
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Figure 8.9: Simplified model of SMIB system

For a SMIB system with machine model (1.0), GEP(s) can be determined
from the block diagram shown in Fig. 8.9. From this, GEP(s) is obtained as

K2K3EXC(S)

CEP(S) = G310 Ky) + KoKeBXC(5)

(8.14)

where EX C(s) is the transfer function of the excitation system.

The transfer function GEP(s) cannot be determined exactly from the
field tests as the rotor velocity variations can never be avoided in practice.
However, it is shown below that GEP(s) can be determined from the following
approximate relationship

K2 AVy(s)

GEP(s) ~ Ks AV,(5)

(8.15)

By measuring the transfer function between the terminal voltage and stabilizer
output (V;) it is possible to experimentally determine the phase characteristics
of the plant.

Derivation of Eq. 8.15
The simplified model of the SMIB (single machine infinite bus) without PSS can
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Figure 8.10: Simplified model of SMIB system without PSS

be obtained as shown in Fig. 8.10. From this figure, the transfer function from
Ve to V; can be obtained as

AV,
AV,

where M = 2H
K. is the effective complex synchronizing torque

Kg Kswp
Ky Ms?+wpKie(s)

(s) = GEP(s) (8.16)

If K5 is zero, then

_ Ky AV(s)

K represents the effect of the rotor angle changes in terminal voltage which has
he following characteristics.

1. With no load on the generator, K5 is positive and approaches zero as the
transmission system becomes weaker.

2. Under load, K5 is positive for strong systems but passes through zero and
becomes negative as the system becomes weak.
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Hence K5 can be assumed to be zero and the approximation of GEP(s) by R.H.S.
of equation (8.15) is valid.

The comparison between the exact and the approximate computation of
GEP(s) is shown in Fig. 8.11 for a representative system.
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Figure 8.11: Phase characteristics of measurable and ideal plant transfer func-
tions
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Figure 8.12: Root loci with variation in stabiliser gain

Once GEP(s) is determined, the PSS time constants are adjusted (by
trial and error) such that the criteria given earlier are satisfied. The performance
of the PSS can also be checked by root locus plots. See Fig. 8.12 for an example.
The root loci with variation in stabilizer gain are drawn for two different values
of f. and for a fixed value of the ratio n. In addition to f., it is possible to vary
the ratio of T} /Ty and T3/Ty independently to get a better performance. It is
observed that either the local mode or the other mode (called the exciter mode
irrespective of its source) gets destabilized as the PSS gain K is increased.

The studies carried out by Larsen and Swann [9] indicate that depending
upon the input signal used, PSS is to be tuned for a particular system condition
which has the highest stabilizer loop gain and greatest phase lag. Full load on
the generator yields the highest loop gain. For speed and power input stabilizers,
the strongest AC system results in the highest loop gain and greatest phase lag.
For frequency input stabilizers, the highest loop gain occurs with weakest AC
transmission systerm.

To set the gain of the PSS, root locus analysis is performed. The optimal
PSS gain is chosen for the particular tuning condition as the gain that results in
the maximum damping of the least damped mode. From studies carried out in
[9], the optimum gain (K,p) is related to the value of the gain (K7) that results
in instability. For speed input stabilizers Ko, = 1/3K, for frequency input
stabilizers Koy = 2/3K;. For power input stabilizers Kope = 1/8Ky. These
thumb rules are useful while implementing PSS in the field without having to
do root locus studies.
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It is to be noted that for input signals other than rotor speed, the block
diagram shown in Fig. 8.7 is not valid. In such cases, the diagram is as given
in Fig. 8.13, where X is an arbitrarily chosen control (input) signal. Sx(s) is
defined as the input signal sensitivity factor and ¥ B (s) is defined as the input
signal feedback factor. For power input stabilizer,

K

Sp(s) = EB—}(—Q (8.17)
Ry(s) T=
FB.(s) =

+
] - -
= Sy () > = PSS (s) = GEP(s) AT,
Figure 8.13: Stabilizer loop with arbitrary input X
FBp(s) = GEP(s) (8.18)

For the general case, the plant transfer function in the stabilizer path is
given by

ATy, . Sx(s)PSSx(s)GEP(s)
Px(8) = 32" (8) = T FBx(5) PS8x(s) (8.19)

For speed input stabilizer, Sx = 1.0, FBx = 0. Hence
F,(3) = PS§S,(s)GEP(s) (8.20)

To summarize, the tuning procedure for the dynamic compensator, the
following steps are carried out.

1. Identify the plant GEP(s)

2. Choose the time constants from the phase compensation technique de-
scribed earlier and from the knowledge of GEP(s).

3. Select the PSS gain such that it is a fraction of the gain corresponding
to instability. This can be determined from root loci to maximize the
damping of the critical (least damped) mode.



