

CS / MCA/SEM-1 / MCA-101 / 2012-13 2012
 COMPUTER ORGANISATION AND ARCHITECTURE

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) 'Cycle Stealing' is associated with
a) Data transfer among registers
b) DMA
c) Pipelining
d) Microprogramming.
ii) The largest integer that can be represented in signed @'s complement representation using n bits is
a) $2 n-1$
b) $\quad 2^{n}$
c) 2^{n-1}
d) $\quad 2^{n}-1$.
iii) Using an additional NOT gate, a JK flip-flop can be converted into
a) T flip-flop
b) RS flip-flop
c) Master Slave flip-flop
d) D flip-flop.
iv) A microprocessor has a data bus with 64 lines and an address bus with 32 lines. The maximum number of bits that can be stored in this memory
a) 32×2^{32}
b) 32×2^{64}
c) 64×2^{32}
d) 64×2^{64}
v) The expression 'delayed load' is used in context of
a) Processor-printer communication
b) Memory-monitor communication
c) Pipelining
d) Computer arithmetic.
vi) Break point is used for
a) Stopping a program at a desired place
b) Manipulating the stack
c) Executing each instruction individually
d) Calling a subroutine.
vii) A truth table of n variables has \qquad minterms.
a) n^{2}
b) $(n-1)^{2}$
c) $\quad 2^{n}$
d) 2^{n-1}.
viii) Which of the following shift operations divide a signed binary number by 2 ?
a) Logical left shift
b) Logical right shift
c) Arithmetic left shift
d) Arithmetic right shift.
ix) Dual of $a+b^{*} c$ is
a) $(a+b)^{*}(a+c)$
b) $\quad a^{*}(b+c)$
c) $a^{\prime *}\left(b^{\prime}+c^{\prime}\right)$
d) $\left(a^{\prime}+b^{\prime}\right) *\left(a^{\prime}+c^{\prime}\right)$.
x) A memory accessed by content is called
a) Associative memory
b) Content associative memory
c) All of the above
d) None of these.

2. a) Why NAND gate called universal logic gate? 2
b) Write the differences of 1 's complement and 2 's complement representations of the binary number system.

3
3. Convert a JK flip-flop into a D flip-flop. 5
4. Verify the de Morgan' theorem by means of truth table. 5
5. Why Grey code is called self-reflective code and Excess-3 code is called self-complementing code ? What are the problems with Grey code ?

5
6. Construct a 5×32 decoder with the help of 2×4 decoders. 5

GROUP - C
 (Long Answer Type Guestions)

Answer any three of the following. $3 \times 15=45$
7. a) Write an algebric function for the given function and simplify algebraically $F(X, Y, Z)=\Pi(0,1,4,5)$
b) Simplify algebraically $\left[X^{\prime}\left(Y^{\prime}+Z^{\prime}\right)\left(X+Y+Z^{\prime}\right)\right]$.
c) Design a combinational circuit that can convert a BCD code to it's equivalent Grey code.
d) Design a block diagram of a 4 - bit adder/subtractor circuit.
$3+3+3+6$
8. a) Write down the advantage and disadvantage of Karnaugh map ? Why does 11 comes before 10 in Karnaugh map ?
b) How many input line(s) must be present in a demultiplexer that has 32 possible output lines ?
c) Why is gated D latched called "transparent" latch ?
d) Construct a one bit BCD adder using two 4 - bit Binary adder and an additional external circuit.

$$
(2+2)+1+2+8
$$

9. a) Design a sequential circuit using JK flip-flop which realizes the following scale diagram :

b) Draw a schematic diagram of JK Master-Slave flip-flop.
c) Find out the value of R if $(125)_{R}=(203)_{5}$.
$8+4+3$
10. a) Design a $8: 1$ MUX using two $4: 1$ MUX.
b) Design a MOD 10 synchronous counter.
c) Design the circuit using Multiplexer.
11. Write short notes on any three of the following :
a) Universal Gate
b) Addressing Mode
c) Cache Memory.
d) Von Neuman Architecture
e) 2 's complement subtraction.
