[8+8]

I B.TECH – EXAMINATIONS, JUNE - 2011 NUMERICAL METHODS (AERONAUTICAL ENGINERING)

Time: 3hours Max.Marks:80

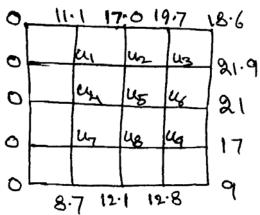
Answer any FIVE questions All questions carry equal marks

- - -

- 1.a) Explain about Newton-Raphson Method.
 - b) Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$.
 - c) Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of Regula Falsi. [16]
- 2.a) Using Newton's forward difference formula find the sum $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$.
 - b) Using Guass-Backward formula find the value of $\sqrt{12516}$ given that $\sqrt{12500} = 111.8033; \sqrt{12510} = 111.8482; \sqrt{12520} = 111.8928; \sqrt{12530} = 111.9375$.
- 3.a) Fit the curve $y = ax^b$ to the data

X	1	2	3	4	5	6
y	1200	900	600	200	110	50

b) Fit a second degree polynomial to the data


X	0	1	2	3	4	5	6
У	14	18	23	29	36	40	46

- 4. Fit a normal cubic B-spline, 's', to the data -2, -1, 0, 1, 2. Show also that 's' is unique if s(t) is prescribed. [16]
- 5.a) A rod is rotating in a plane. The following table gives the angle θ through which the rod has turned for various values of the time 't' in seconds. Find the angular velocity of the rod when $\tau = 0.6$

X	0	0.2	0.4	0.6	0.8	1.0	1.2
У	0	0.122	0.493	1.123	2.022	3.200	4.666

- b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by using the Trapezoidal rule with h = 0.125. [8+8]
- 6.a) Find the rank of $\begin{bmatrix} 2 & -1 & 3 & 2 \\ 1 & 4 & -2 & 5 \\ 5 & 2 & 4 & 1 \\ 1 & -1 & 2 & -1 \end{bmatrix}$.
 - b) Solve x+3y+8z=4; x+4y+3z=-2; x+3y+4z=1 by LU-decomposition method. [8+8]

- 7. Use Milne's Predictor-Corrector Method to find y(0.3), given that $y' = \frac{1}{x+y}, \ y(0) = 1, \ h = 0.1.$ [16]
- 8. Solve the Laplace equation $\nabla^2 u = 0$ at the interior points of the square given in figure [16]

R05

I B.TECH – EXAMINATIONS, JUNE - 2011 NUMERICAL METHODS (AERONAUTICAL ENGINERING)

Time: 3hours

Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

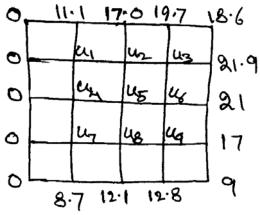
1.a) Fit the curve $y = ax^b$ to the data

X	1	2	3	4	5	6
y	1200	900	600	200	110	50

b) Fit a second degree polynomial to the data

[8+8]

X	0	1	2	3	4	5	6
у	14	18	23	29	36	40	46


- 2. Fit a normal cubic B-spline, 's', to the data -2, -1, 0, 1, 2. Show also that 's' is unique if s(t) is prescribed. [16]
- 3.a) A rod is rotating in a plane. The following table gives the angle θ through which the rod has turned for various values of the time 't' in seconds. Find the angular velocity of the rod when $\tau=0.6$

X	0	0.2	0.4	0.6	0.8	1.0	1.2
у	0	0.122	0.493	1.123	2.022	3.200	4.666

- b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by using the Trapezoidal rule with h = 0.125. [8+8]
- 4.a) Find the rank of $\begin{bmatrix} 2 & -1 & 3 & 2 \\ 1 & 4 & -2 & 5 \\ 5 & 2 & 4 & 1 \\ 1 & -1 & 2 & -1 \end{bmatrix}$.
 - b) Solve x+3y+8z=4; x+4y+3z=-2; x+3y+4z=1 by LU-decomposition method. [8+8]
- 5. Use Milne's Predictor-Corrector Method to find y(0.3), given that

$$y' = \frac{1}{x+y}, \ y(0) = 1, \ h = 0.1.$$
 [16]

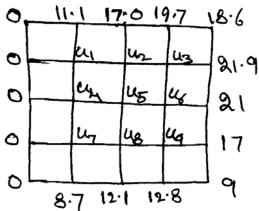
6. Solve the Laplace equation $\nabla^2 u = 0$ at the interior points of the square given in figure [16]

- 7.a) Explain about Newton-Raphson Method.
 - b) Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$.
 - c) Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of Regula Falsi. [16]
- 8.a) Using Newton's forward difference formula find the sum $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$.
 - b) Using Guass-Backward formula find the value of $\sqrt{12516}$ given that $\sqrt{12500} = 111.8033; \sqrt{12510} = 111.8482; \sqrt{12520} = 111.8928; \sqrt{12530} = 111.9375$. [8+8]

I B.TECH – EXAMINATIONS, JUNE - 2011 NUMERICAL METHODS (AERONAUTICAL ENGINERING)

Time: 3hours

Max.Marks:80


Answer any FIVE questions All questions carry equal marks

- - -

1.a) A rod is rotating in a plane. The following table gives the angle θ through which the rod has turned for various values of the time't' in seconds. Find the angular velocity of the rod when $\tau=0.6$

X	0	0.2	0.4	0.6	0.8	1.0	1.2
У	0	0.122	0.493	1.123	2.022	3.200	4.666

- b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by using the Trapezoidal rule with h = 0.125. [8+8]
- 2.a) Find the rank of $\begin{bmatrix} 2 & -1 & 3 & 2 \\ 1 & 4 & -2 & 5 \\ 5 & 2 & 4 & 1 \\ 1 & -1 & 2 & -1 \end{bmatrix}$.
 - b) Solve x+3y+8z=4; x+4y+3z=-2; x+3y+4z=1 by LU-decomposition method. [8+8]
- 3. Use Milne's Predictor-Corrector Method to find y(0.3), given that $y' = \frac{1}{x+y}, \ y(0) = 1, \ h = 0.1.$ [16]
- 4. Solve the Laplace equation $\nabla^2 u = 0$ at the interior points of the square given in figure [16]

- 5.a) Explain about Newton-Raphson Method.
 - b) Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$.
 - c) Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of Regula Falsi. [16]
- 6.a) Using Newton's forward difference formula find the sum $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$.
 - b) Using Guass-Backward formula find the value of $\sqrt{12516}$ given that $\sqrt{12500} = 111.8033; \sqrt{12510} = 111.8482; \sqrt{12520} = 111.8928; \sqrt{12530} = 111.9375$.
- 7.a) Fit the curve $y = ax^b$ to the data

X	1	2	3	4	5	6
у	1200	900	600	200	110	50

b) Fit a second degree polynomial to the data

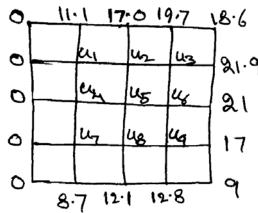
X	0	1	2	3	4	5	6
У	14	18	23	29	36	40	46

[8+8]

8. Fit a normal cubic B-spline, 's', to the data -2, -1, 0, 1, 2. Show also that 's' is unique if s(t) is prescribed. [16]

I B.TECH – EXAMINATIONS, JUNE - 2011 NUMERICAL METHODS (AERONAUTICAL ENGINERING)

Time: 3hours


Max.Marks:80

Answer any FIVE questions All questions carry equal marks

- - -

1. Use Milne's Predictor-Corrector Method to find y(0.3), given that $y' = \frac{1}{x+y}, \ y(0) = 1, \ h = 0.1.$ [16]

2. Solve the Laplace equation $\nabla^2 u = 0$ at the interior points of the square given in figure [16]

- 3.a) Explain about Newton-Raphson Method.
 - b) Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$.
 - c) Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of Regula Falsi. [16]
- 4.a) Using Newton's forward difference formula find the sum $S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$.
 - b) Using Guass-Backward formula find the value of $\sqrt{12516}$ given that $\sqrt{12500} = 111.8033; \sqrt{12510} = 111.8482; \sqrt{12520} = 111.8928; \sqrt{12530} = 111.9375$. [8+8]
- 5.a) Fit the curve $y = ax^b$ to the data

X	1	2	3	4	5	6
y	1200	900	600	200	110	50

b) Fit a second degree polynomial to the data

X	0	1	2	3	4	5	6
у	14	18	23	29	36	40	46

- 6. Fit a normal cubic B-spline, 's', to the data -2, -1, 0, 1, 2. Show also that 's' is unique if s(t) is prescribed. [16]
- 7.a) A rod is rotating in a plane. The following table gives the angle θ through which the rod has turned for various values of the time 't' in seconds. Find the angular velocity of the rod when $\tau=0.6$

 x
 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2

 y
 0
 0.122
 0.493
 1.123
 2.022
 3.200
 4.666

- b) Compute the value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by using the Trapezoidal rule with h = 0.125. [8+8]
- 8.a) Find the rank of $\begin{bmatrix} 2 & -1 & 3 & 2 \\ 1 & 4 & -2 & 5 \\ 5 & 2 & 4 & 1 \\ 1 & -1 & 2 & -1 \end{bmatrix}$.
 - b) Solve x+3y+8z=4; x+4y+3z=-2; x+3y+4z=1 by LU-decomposition method. [8+8]