Page |32

ANALYSIS

e s

Engingering Progenses

Requirement.

9 Explain Requircmcnt E"ginee;

%ﬁél. What is Requirement Engincering
Process. 7 ;
A. Requirement Enginecering: . ents from client, analyze a{,d demu”‘)
The process to gather the software rCCl}"re'f’h e :
them is known as requirement cng:mecrmg. 1;] cgé’scriptivc

develop and maintain sophisticated ~ an S
Specification’ document.
Requirement Engincering Process
« Feasibility Study

« Requirement Gathering)
. Software Requirement Specification
« Software Requirement Validation_

It is a four step process, which includes —

Feasibility study . . o
When the client approaches the organization for geting ﬂ;cthgc::;iaﬁ:oliﬂz: £
developed, it comes up with rough idea about what all function e im0 il
perform and which all features are expected from the software. g s,gtem 1: :
information, the analysts does a detailed study about whether the desired sy an._ 1
its functionality are feasible to develop. o) '
| This fcusibilit)?’study is focused towards goal of the orgamzatlop. Th:s sfudy ﬂnﬂ{y7CS
whether the software product can be practically malerlahzed_ in terms of}
implementation, contribution of project to organization, cost constraints and as per{}
values and objectives of the organization.

BN

Requirement Gathering I8
If the feasibility report is positive towards undertaking the project, next phase starts |8

with gathering requirements from the uséf: ‘Analysts and-engineers communicafe with i
the client and end-users to know their ideas on what the software should provide and_
which features they want the software to include. o

| #1

Software Requirement Specification -+ f:

e |
SRS is a document created by system analyst after the requirements are collected E
from various stakeholders. SRS defines how the intended software will interact with f
hardware, external interfaces, spced of operation, response time of system, portability | §
of software across various platforms, maintainability, speed of recovery after |
crashing, Security, Quality, Limitations etc.
SRS should come up with following features:

» User Requirements are expressed in natural language.

« Technical requiremen
inside the organization.
Design description should be writte
Format of Forms and GUI screen p
« Conditional and mathematical nota

n in Pscudo code.
rints.

tions for DFDs ctc.
Software Requirement Validation i i
After requirement specifications are developed, the requirements mcquoncd in this
document are validated, User might ask for illegal, impractical solution or experts
may interpret the requirements incorrectly

. This results in huge increase in cost if not
nipped in the bud. Requirements can be che

cked against following conditions -
. Ifthey can be practically implemented

« Ifthey are valid and ag
« If there are any ambigu
« If they are complete

« If they can be demonstrated

per functionality and domain ofsoft\:varf:-
itics “ *

xt:#t#t#xt#*#******##************#t*t#t**ttt**##**#t*****‘-**********‘
Feasib:‘ll‘ 1y f?c?,u,;mmemts

sfudy elicidodion and

Avalysrs

‘tser ond S ysfenm

Regu \ve ‘mexﬁl"s*

Page |34

Is are expressed in structurcd language, which is used

\ J_.r
g

) is
ftware RequrremenAnale
Jain. (OY) Explain Requirs

PrrITI LI L

ic? X
2. What is chuircmcnt Analysis¢ Lxp

Elicitation for software.

A. Requirement Analysis: It .IS a
software cngincering task that bridges
level

the gap between system
1¢ and sofhvare

requirements enginee rir /
. into -five

design. H may be divided e
arcas of effort: (1) problem recognition
(2) ecvaluation and syntheses 3)
modeling (4) specification and (5)

review. . |
s the proceés of gathering the requirements. In this proce
: like softwarg developers and the sy.
ystem and.the customers. This pro

lude:

Requirements elicitation i
the technical professional in the organization,

engineers, work together with the users of the s © loms inc
is useful in finding the problems that has to ke solved. The problems,

1. What the proposed system should provide?

2. What are the.expected services form the system?

3. What are the required characteristics of the system? . ”
4. What are the required hardware.and software constraints of the system .
Requirements elicitation process includes a chain of processes that interact \a._'lth ed
other to produce requirements documentation. "ljhe lifecycle of the requireme:

elicitation process is: . “
t. Back greund Knowledge: The anal
“** {he .doniain knowledge of the application
the system is developed for AT M, the
knowledge of how the ATM works.
Gathering the requiremenis: This 1s the activity of discovering thefs
requirements by involving with the stakeholders and users. B

3. Requirements classification: This activily includes the organizing of the

requirements gathered from different sources.
Requirements conflict: This activity involves with the stakeholders andj

1

requirements engineers. This is used to solve the problems in the requirements
that contradict the organization and business rules.
5. ‘Requirements Prioritization: Discovering the important requirements by |$
interacting with the stake holders and organize them in to most priority order. '
6. Requirements check: This activity involves checking the stake holder’s’

expectations on the system with the gathered requirements.

ysllmust understand the back ground
that is being developed. Example:
- developer should have some basi

[SS]

P

Page |36
Requirements eljgitag:
. @ Clicitation py
pequirements, but also i anal Process not only helps the

by i scs : :
organization, The rcquircn’ncits ct]l'lc- eéquirements and the business procedures of the
pequirements cnginccring‘ ICitation and analysis is a difficult activity in the

organization to gather the

SRR RO K gy
"‘*‘tttttunumtttttttt:ncsta.t--catc*taocoum

3. Write about chuircment Ll

A. Requirement elicitat;

e LA L E v,
#»a&qull"om.nt"..

i! Gathering

it st L Y Mo

icitation Process?

4
g

+ Requirements gathe
know their expectatio
« Organizing Require
in order of'impormnce, urgency and co
« Negotiation & discussion -
conflicts in requireme

ring - The developers discuss with the client and end users and
Rs from the software.

eI - The developers prioritize and arrange the requirements

nvenience.

¢ _If requirements are ambiguous or there are some

disatissest it Smkchf:)lsdgs'svagous. stakeholders, if they are,_il is-thcn negotiated and

compromised. The s | ¢quirements may l_hcn be prioritized and reasonably
requirements come from various stakeholders. To remove the

ambiguit i .
Buity and conflicts, they are discussed for clarity and correctness. Unrealistic
requirements are compromised reasonably

» Documentation - All formal & informal, functional and non-

functional requirements
are documented and made available for next phase processing.

A R o o ok
ok Ok Lt *****************#t*ttt*ttt¢¢-tttttt;¢:.ttat.-ttt:t:acocttno

4. What Réquirement Elicitation techniques?

A. Requirements Elicitation is the process to find out the requirements for an intended
software system by communicating with client, end users, system users and others

who have a stake in the software system development. There are various ways to
discover requirementss” *- e .- S S s

Interviews: : - % i

" eaga . =a

" - - e ama St =,

Interviews are strong medium to collect requirements.

: ; Organization may conduct
several types of interviews such as:

- Struetured (closed) interviews, where every single information to gather is
decided in advance, they follow pattern and matter of discussion firmly.

- Non-structured (open) interviews, where information to gather is not decided
in advance, more flexible and less biased.

« Oral interviews

« Wrillen interviews

« One-to-one interviews which are held between two persons across the table.

» Group interviews which are held between groups of participants. They help to
uncover any missing requirement as numerous people are involved.

——

.~

l_‘ 5 = - - —

[——

— 2

— Pagejy

Surveys

- akeholders by queryin
Organization may conduct surveys among various stak

. : coming system.
their expectation and requirements from the up <
uestionnaires

A document witl
handed over to al
A shorlcoming o
qucslimmairc, th

Task analysis
Team of engineers an

g aboy |

jectiv tions and respective optj
pre-defined set of objective ques '1 ption
ettt - vhich are collected and compiled.
.
< ders to answer, which (! : '
il‘lsl:f]s}\fehcohln;:quc is, if an option for some issue is not mentioned jin the
1 H]
e issue might be left unattended.

S is

d developers may analyze the ope&‘ra‘t’ion fOT pt?f{;rl:nth:errtl:iw
are (o n

System is required. If the client already has S?lnslestse(:n e collected

Oberation, it is studied and requirements of proposed sy :

Domain Analysis

Every sofiware falls into some d

be a great help 1o

Brains!ormin
———=arming

An informal debate is

recorded for furt

Prolcot\,rgino=

Prololyping is buildin
interpret the features

omain category. The expert people in the domain can
analyze general and specific requirements.

held among various slakeholders and all their inputs are
her requirements analysis.

i i i lity for user tq
i i ding detail functiona :
user interface without ad e
gof intended software product. It helps %lvmlg Zit’t::-elfc::n:g
i ient’ develo

Tequirements. If there is no sofiware 1nslall.ed at client’s jngeil'zr e:crcafes i
and the client is not aware of its own requirements, the : h sll:o\m o g o e 0
based on initially mentioned requirements. The prototyp o gl F5t ey
the feedback is noted. The client feedback serves as
gathering.
s e izati bserve the actual
Team of experts visits the client’s organization or worlfp]la];::.“giijizl:wm R
working of the. existing installed systems. They observe the v _clie
and how

o B -
» p 3 are,

ot o 2 e o 4 o S B o 3 ***#**********
¥ ok ko & ko sk % e oheosle ok ke e EE s T .k**:ﬁ:,*****#**************
te ok ok ok % ok 3 Ed

Page |38

A.!].E.!.!.Y.%!..S...Q..Q!.?.E?.L?.t.§..§.!1§!..!?.!?i!3.§.i!?.!.fé.-?.
= What ave analysis principles?

- Bach analysis method has o unique point of view,
By A

All analysis methods are related
ciples:

Set ot operational prin

W N - AR N . . .
g :f‘tl:l\sxllt and understand the mformation domain
v ~ - -« 1 .

- Detine the tunctions that the soflware

>

»
Re present e behavior o [the software

" Alse i T - : unecti i
RS models o depiet mtormation, function, and behavior
2 uncover the det:

¢ Mo o, CovEr Tl d 1ls i.n a layered lhshios!.
N oo “messential Intormation toward to details
,\n;otlguulclmc:\: tor requirement engineering:
Ny llﬁl-‘:-k:lmmnd the problem before beginning to create the analysis model
S SVelop prototypes 1o help user to understand how human-machine
micractions
\u A \“ . . -
:L !\L‘\‘U_ld tI}c ongin ofand the reasons for every requirement
= Usgk nultiple views of requirements '
i:“ Prioritize requircments ;
B Work to climinate ambiguity -

The luf‘m-mntluu Domain: Software is built to process dat
i one form to another, Soflw

§ principle e

a, to transform data from
The first operational analysis
Information domain contains three

are also process events.
am the information domain.
ata and control:

Quires to ex
i} different views of'the d

ks ir_*&»:‘r_rff{e'_-"_q_ﬂ_t_.'(w!s:{!_f._r_!_m__f relationship:
indi\'idu;nl data and control objects. Th

dataand objects.
2. _!g;;‘_fg;;g;;g;};g__f_f_o_n_': Represe
cach move through g

LY

Information content --> represent the
ere are different relationships between

4

ata and-control changé is
and control moves between two

nts the manner in which d

system. " Data
transtormations (functions).

nformation structure:
control items.

tad

Represent the internal organization of various data and

= Data tree structure
= Data table (n-dimension)

Modeling: During sofiware requirements analysis, we create models of the system to
| be built.

= The models focus on - wh
-

at the system must do, not how it does it.

The models usually have n graphic notation to represent - information,
processing, system behavior, and other features

AT I AN AT AT

P —

~ The second and third operational analysis principlcs require:
- build models of function and behavior
- Functional models

-> Software transforms information.
output

= Behavior models: Most software responds 10
behavior model creates a representation of the states o

Cause software to change state § anal i d ine 8
= Important roles of models: The model aids the ana yst in understanding the |’

information, function, and behavior of a system. ‘) p il b
The model becomes the focal point for review 1n the aspects o completeneSS’

consistency, and accuracy of the specification. dine the desi e
The model becomes the foundation for design, providing the designer with an :

essential representation of software.

Three generic functions: - input, proc@ssin'g" ._
; |

events from the outside worlg |
f the software and evengg that |

3 > - D - -+ 3 1 s
hierarchical representation of information (or function):

- Exposing increasing detail by moving vertically in the hierfzrchy
- Decomposing the problem by moving horizontally in the hierarchy.

Partitioning: Partitionino‘decomposes a problemn into its constituent parts. Establisp, a 'f

SafeHome soltware

i

Configure system Monilor sensors Interact with user

o
o

Horizonlal partitioning

B e T T e e L T S R L S e b b B b L ST ST

o A g

A A T I A -

TN R SRy

) e,

Analysis Mod

S o e i, By

> IR AN AR cowanty of e Anadvan moded®

_ R NSRS
7O PUHRNGT RN 1 e
Sl B QusRowne SNSRI
TR S D R O coortion of &
oD daNze. D o e = of
DO ORI T Qe D il SR
A SRR B DRk The Nalew i Be

OISR maG

e O ,)
Y U SRR e

-

- s

i Tril o :\l‘iﬁh‘ﬁ#‘\‘ - R :‘\\E,\\;‘k:\h N Y i \H b I T Y =~ ™ 3
‘ < SO ThaT Qontada dseurintions of el Aada ooty prodhead

-

BEGE NS

o
v AN S s g < -

Cesy Qe Dizgeers (AR - GSees iationadin honvven Aatk RN

ar Ao DRerearre (ORI - 3 % 3

g ome DReezre DED) — saeves Do Darmoaes 1) dafings e msidraien of

BV AT TR IRONS B She Snetee,) to Aol 2 Sactions Rt meeafive the

~
S | T

L AR S S =~ R 3 N =23 Iy e
AN ROERoemae (PPN - & CRSOTINRGN OF 3l TIaadriont powdanid i W
WD = oonmaaad B R PRNRC

~
o
Neprr L RERPuar 2 e (NI Dy 2 Aow e sustoem Nohaves N
New & R SRERTare T - dadlcetss 0w the syt b N =8
-~ -
- : b - ~ ~
SOSNDSERTNND Dy o e = 1| :3.'\"‘..,""3‘\ 2 LSV Ml e e S
=

A R T T, T N, 4 - = - = = b
oAl APROPRRa (CRIND) - addithual mrmation showt the contrel aspocts of

-~ - - = - A
Ny g W P L N s, ..\:\ \\ ™ =
O ESENMEET IR QORI | T LATe L

~ ™~

N R R R N R RN I O R NN IR R E R T E R R R EE T E RN T T ART IRV IRIRE

T RaT B Dars Modaiina? Explain.

R T S 5 5 e N . S v anv S
ORI OMNRIME SNSIDIE 3 S22 O 3Poniiie QURSTing st &t raixvant R any Gtk
< <

SIS RONIRRGON. Diatk maodaiing mathods male we of BR Disgmmns,
ooy, attridutes snd relatfonshins: I dar mad consists thme

- o ~
Qg Loy, [rCpipay Ry - g o Sty .
SITRLERTAO OGS O 3 dommaatoe

Data Op;

«d i al) ccl x 3 . . i .

Uﬂdcrstoo-:] bs It is a representation of any composite information that must pe

it Y software. A data object can be an external entity, a thing, or anything
€ OBjects are related to one another. '

Aliributos; Relotionships:

Namao
Addross

Ago

Drlver's licenta
Number

- * . ‘
Maka -
Madel

ID number
Bedy bype
Colar

Attributes: Auribute define the propertiés of a data object. They can be used to:

(1) Name an instance of the data object.. -

(2) Describe the instance. 3]f
(3) Make reference to another instance in another table. =
Relationships: It describes the connected components. ¥
C:lr_din:llil}' and Modality: ThC_ . Cordinclhy
cardinality defines the maximum - B i asvishinsdon by

Critoner gwoin repale achicaf]

number of objects that can participate l

in a relationship. The modality of a- | — T
. i : i . ’ gt) b provided wih |
relationship 0 if there is no explicit F ‘;3_113,?_
1 H (.;‘.'.',',
need for the relationship to occur. . \ 7-
o Modaty: Mandetory Madolty Opfond |18
= -t Ingher hat In orded o Inphet ot thers may
: : haws o repalr actionft} be 0 1twafon in whicha |
we mutd have o cutlomer tepait odion |1 ncl necetian e]

LN LR
.

Entity — Relationship Diagrams: The TR

. , - Shopper. |
object / relationship pair is the, SIAN LA
cornerstone of the data model. These
are represented graphically using the
entity / relationship diagrams.

Mem_price’

e s o o o s o o o o o ok ok R o oo ok ook ok ook ok o sk ok sk ok ook ok ok s s ok sk ok sk ok ok sk kR Sk kK koK Rk Rk K ok X

/""‘-—-—__ .
R ! page |42

8. gxplain functional Modeling and information flow.

A. Functional Modeling gives the process perspective of the object-oriented analysis

model and an overvicw of what the system is supposed to do. It defines the function

o the internal processes in the system with the aid of Data Fl

depicts the functional derivation of the data values without i

Jerived when they are computed, or why they need to be computed.

pata Flow Diagrams |

junctional Modeling is represented through a hierarchy of DFDs. The DFD is a

hical representation of a system that shows the inputs to the system, thc
he internal data

essing upon the inputs,”the outputs of the system as well as t
tations performed on the

bjects that affect the

ow Diagrams (DFDs). T
ndicating how they are

grap

proc . .
stores. DFDs illustrate the seties of transformations or compu

objects or the system, and the external controls and ©o
transformation.

L A e

\
[2] v - e
2] ilhve — “{;:SC

s

Count Ouders,

The four main parts of a DFD (Féaturcs oI DFDyarel *
1) Processes

Processes are the computational ac
can be visualized as a high-level process. A proc
smaller components. The lowest-level process may b
2) Data Flows

Data flow represents the flow of data between (w0 proccsses. It could be between an actor
and a process, or between a data store and a process. A data flow denotes the value of a data
item at some point of the computation. This value is not changed by the data {low.

3) Actors
Actors are the active objects that interact with the system by either producing data and
inputting them to the system, or consuming data produced by the system. In other words,

actors serve as the sources and the sinks of data.

tivities that transform data values. A whole system
ess may be further divided into

e a simple function.

|

|

[3 |

Page | a3

4) Data Stores ; (] SNnot
Data stores are the passive objects that act as a repository of dnm: Unlike uclm:‘:i 'dlst:t)"l (",l;.‘l::;
perform any operations. They are used to store data and retrieve the storec a. 4
represent a data structure, a disk file, or a table in a database.

The other parts of a DFD are:

1) Constraintis

: e " f gl . s satisficd over time.
Constraints specify the conditions or restrictions that nced to bt... S:mc'm appEarTnall
They allow adding new rules or modifying cxisting oncs. Constraints can &
the three models of object-oriented analysis.

2) Control Flows 0
: . . is ¢ iated only if the
A process may be associated with a certain Boolean valuc and is L;';ll;;lmn V’II?I’CS proy
. sy os . . i L2 oL &) ! <
ralue is true, though it is not a direct input to the process. These Bo

called the control flows
. s o ok oo o A o o
******?F************t*****# ilt********************0****1‘*"'**

P N e e et i, -~

