

Reg. No. :

Name :

V Semester B.Tech. (Including Part Time) Degree (Reg./Sup./Imp.) Examination, November 2012 (2007 Admn. Onwards) PT 2K6/2K6 EC 503 : APPLIED ELECTROMAGNETIC FIELD THEORY

Time : 3 Hours

Max. Marks: 100

Instruction : Answer all questions.

PART – A

- I. a) State and explain Gauss's Law in electrostatics.
 - b) Transform the given vector A = P(z^2 + 1) a_p Pz cos ϕ to cartesian co-ordinates.
 - c) Explain magnetic vector potential.
 - d) Explain self and mutual inductance.
 - e) Derive the current continuity equation.
 - f) Explain the concept of elliptical polarization.
 - g) Write a note on standing wave ratio.
 - h) Explain with necessary theory the construction of Smith chart. (8×5=40)

PART-B

II.	a)	State and explain Divergence theorem.	6
	b)	Derive the expression for electric field intensity due to infinite sheet charge with inform charge density $Ps c/m^2$.) 9
		OR	
	c)	Derive the expression for potential at any point due to dipole.	8
	d)	A circular flat ring of inner radius 1 m and outer radius 2 m has surface charge density $Ps = 100/r \ \mu c/m^2$. Determine the resulting 'E' on the axis	
		of the ring 10 m away from the centre.	7
			P.T.O.

M 2			
111.	a)	State and explain Biot-Savart's law.	6
	b)	A solenoid of length ' <i>l</i> ' and radius 'a' consists of 'N' turns of wire carrying current 'I'. Find 'H' at a point 'P' along its axis.	9
		OR	
	c)	Derive the magnetic boundary conditions at the boundary between two composite magnetic materials.	8
	d)	Explain magnetic moment. Derive the expression for torque on a closed circuit.	7
IV.	a)	Derive the Maxwell's equation in the differential and integral form for a time varying field from Ampere's law.	8
	b)	Explain dielectric hysteresis.	7
		OR	
	c)	The electric field associated with a plane wave travelling in a perfect dielectric medium is given by $E_x(z, t) = 10 \cos (2\pi \times 10^7 t - 0.\pi z) \text{ V/m}.$	8
		a) Determine the velocity of propagation	
		b) Find the expression for H if $\mu = \mu_o$.	
	d)	Derive the relation between E and H.	7
V.	a)	Explain :	9
		1) Phase velocity and Group velocity	
		2) Characteristic impedance.	
	b)	Explain P-polarized wave.	6
		OR	
	c)	Explain the process of impedance matching by stub lines.	8
	d)	Discuss briefly the results of reflection and refraction of plane wave incident normally to the surface of perfect dielectric.	7

.