Code No.: 3067

FACULTY OF ENGINEERING

B.E. 3/4 (Civil) II Semester (Main) Examination, May/June, 2011 WATER RESOURCES ENGINEERING & MANAGEMENT – I

Time	: 3 H	ours]		[Max. Marks : 7	′5		
Note		nswer al art – B .	•	Answer any five questions from	gen 🕻		
1.	PART – A A catchment area has a total area of 400 Sq km. The outflow from a storm of duration 3 hours found to be 760 cumecs. Compute the direct runo depth neglecting all losses and base flow.						
2.	A sample of water has a total volume of 9×10^4 mm ³ . The sample of this soil was saturated and its weight was found to be 2.14 N and then the sample is drained by gravity and the weight of this found to be 1.83 N. The same sample is oven dried till it reaches a constant weight of 1.49 N. Compute the specific yield and specific retention of this sample.						
3.	Deriv	e the rela	ationship between Duty, De	lta and Base period.	3		
4.	What do you understand by Balancing depth in canals and state i importance?						
5.	A regime channel discharges 8 cumecs of water having Lacey's silt factor 0.9. The side slopes are 1:1 compute the regime velocity of this channel.						
6.	Define Exit Gradient and state its importance.						
7.	Distinguish between a Weir and a Barrage.						
8.	What do you understand by a cross drainage work? List the conditions of their selection.						
9.	Define single purpose and multipurpose projects with an example in each case.						
10.	Defin	ne Warab	andhi scheme in water mar	nagement scenario.	2		
			Part – B	(Marks: 50	0)		
11,	 (a) With the help of neat sketch explain various processes of hydrocycle and how it is useful in Water Resources Engineering. 						
	(b) A large sample of peak flood data from a river has been available. The flood frequency studies were carried out for this river shows the following results. Estimate the flood magnitude for this river for						
4		f T	eriod of 200 years.	Deal Clared (Oversea)	5		
		S. No.	Return Period (T Years)	Peak Flood (Cumecs)			
		1	50	20,200			
		2	100	30,400			

12.	(a)	With the help of neat sketches, explain briefly various methods of irrigation.	5
	(b) ·	Design an irrigation channel based on Lacey's theory to carry a discharge of 16 cumecs. Assuming silt factor as 0.86 and side slopes 1:1.	5
13.	(a) (b)	With the help of neat sketches, explain Khoshla's method of independent variables with all the necessary corrections. With the help of neat sketch, explain the design principles of a vertical drop weir.	5
14.	(a) (b)	Explain the functions of the following structures: (i) A Head Regulator (ii) A Cross Regulator Derive the relationship between Sensitivity, Flexibility and Proportionality of outlet.	5
15.	Write (a) (b) (c)	e a note on the following: Functional requirement of Multi-purpose projects. Project formulation. Farmer's participation in Water management.	10
16.	(a) (b)	A 300 mm dia well penetrates 20 m below the static water table. After 24 hrs of pumping at 5000 liters per minute, the water level in the test well at 100 m away is lowered by 0.50 m and the well at 30 m away, the drawdown is 1.0 m. Determine the transmissibility of the aquifer. Design a concrete lined channel to carry a discharge of 200 cumecs of water with a slope of 20 cm per km. Assume side slopes of 1.5 H: 1 V and limiting velocity as 2 m/sec. The Mannings Coefficient as 0.015.	5
17.	(a) (b)	Explain the process of Runoff. And what are the various factors that govern the runoff? A weir section has a horizontal floor length of 50 m with a sheet pile at the beginning, middle and at the end having lengths 6 m at the beginning and 9 m each at intermediate and end positions. The steady seepage head may be taken as 5 m. Design the floor thickness required at the mid points of these sheet piles using Bligh's theory. Assume Bligh's coefficient as 12 and unit weight of floor material as 2.20.	5