I B.Tech Examinations,June 2011 BASIC ELECTRICAL ENGINEERING
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) A capacitor having a capacitance of $10 \mu \mathrm{~F}$ is connected in series with a non inductive resistance of 120Ω across $100 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the power, current and the phase difference between current and voltage.
(b) In a R-C series circuit, voltage across the combination is given by $40 \operatorname{Sin}(2000 t+45)$, $\mathrm{R}=10 \Omega$. The current leads the voltage by $\pi / 3$ radians. Find the value of C . Also find the expression for current.
2. (a) Give a detailed comparison of series and parallel circuit.
(b) What are the applications, merits and demerits of a series circuit?
(c) What are the applications and advantages of a parallel circuit? $[6+5+5]$
3. What do you understand by attraction type and repulsion type instruments? Explain.
[16]
4. (a) Sketch the torque - slip characteristics, and the torque - speed characteristics of three phase induction motor with relevant explanations.
(b) A 3 phase, 6 pole 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
[8+8]
i. No load speed
ii. Full load speed
iii. Frequency of rotor current on full load.
5. (a) Deduce an expression for the lifting power of a magnet.
(b) Two coils having 50 and 400 turns respectively are wound side by side on a closed iron circuit of cross sectional area 150 sq.cm and of mean length 200 cm .

$$
[6+10]
$$

6. (a) A copper wire of diameter 1 cm has resistance of 0.15Ω. It was drawn under pressure so that its diameter was reduced to 50%. What is the new resistance of the wire?
(b) State and explain Faradays law of electromagnetic induction.
7. (a) Give the difference between the cumulative and differentially compounded DC generator.
(b) A DC series generator has an armature resistance of 0.5Ω and series resistance of 0.03Ω. It drives a load of 50 A . It has 6 turns per coil and total 540 coils on the armature and is driven at 1500 rpm . Calculate the terminal voltage at load. Assume 4 poles lap type winding, flux per pole as 2 mWb and total brush drop is 2 V .
[6+10]
8. Starting from the ideal transformer, obtain the approximate equivalent circuit of a commercial transformer in which all the constants are lumped and represented on one side.
A single phase transformer has a turn ratio of 6 . The resistance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondary are 0.03 Ω and 0.13Ω respectively. If 330 V at 50 Hz be applied to the high voltage winding with the low-voltage winding short circuited. Find the current in the low-voltage winding and its power factor. Neglect magnetizing current.

I B.Tech Examinations,June 2011 BASIC ELECTRICAL ENGINEERING
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Give a detailed comparison of series and parallel circuit.
(b) What are the applications, merits and demerits of a series circuit?
(c) What are the applications and advantages of a parallel circuit? $[6+5+5]$
2. (a) A capacitor having a capacitance of $10 \mu \mathrm{~F}$ is connected in series with a non inductive resistance of 120Ω across $100 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the power, current and the phase difference between current and voltage.
(b) In a R-C series circuit, voltage across the combination is given by $40 \operatorname{Sin}(2000 t+45)$, $\mathrm{R}=10 \Omega$. The current leads the voltage by $\pi / 3$ radians. Find the value of C. Also find the expression for current.
[8+8]
3. Starting from the ideal transformer, obtain the approximate equivalent circuit of a commercial transformer in which all the constants are lumped and represented on one side.
A single phase transformer has a turn ratio of 6 . The resistance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondary are 0.03 Ω and 0.13Ω respectively. If 330 V at 50 Hz be applied to the high voltage winding with the low-voltage winding short circuited. Find the current in the low-voltage winding and its power factor. Neglect magnetizing current.
4. (a) Deduce an expression for the lifting power of a magnet.
(b) Two coils having 50 and 400 turns respectively are wound side by side on a closed iron circuit of cross sectional area 150 sq.cm and of mean length 200 cm .

$$
[6+10]
$$

5. (a) Give the difference between the cumulative and differentially compounded DC generator.
(b) A DC series generator has an armature resistance of 0.5Ω and series resistance of 0.03Ω. It drives a load of 50 A . It has 6 turns per coil and total 540 coils on the armature and is driven at 1500 rpm . Calculate the terminal voltage at load. Assume 4 poles lap type winding, flux per pole as 2 mWb and total brush drop is 2 V .
[6+10]
6. (a) A copper wire of diameter 1 cm has resistance of 0.15Ω. It was drawn under pressure so that its diameter was reduced to 50%. What is the new resistance of the wire?
(b) State and explain Faradays law of electromagnetic induction.
7. What do you understand by attraction type and repulsion type instruments? Explain.
8. (a) Sketch the torque - slip characteristics, and the torque - speed characteristics of three phase induction motor with relevant explanations.
(b) A 3 phase, 6 pole 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. No load speed
ii. Full load speed
iii. Frequency of rotor current on full load.

I B.Tech Examinations,June 2011 BASIC ELECTRICAL ENGINEERING
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) A copper wire of diameter 1 cm has resistance of 0.15Ω. It was drawn under pressure so that its diameter was reduced to 50%. What is the new resistance of the wire?
(b) State and explain Faradays law of electromagnetic induction. [10+6]
2. (a) Sketch the torque - slip characteristics, and the torque - speed characteristics of three phase induction motor with relevant explanations.
(b) A 3 phase, 6 pole 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. No load speed
ii. Full load speed
iii. Frequency of rotor current on full load.
3. Starting from the ideal transformer, obtain the approximate equivalent circuit of a commercial transformer in which all the constants are lumped and represented on one side.
A single phase transformer has a turn ratio of 6 . The resistance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondary are 0.03 Ω and 0.13Ω respectively. If 330 V at 50 Hz be applied to the high voltage winding with the low-voltage winding short circuited. Find the current in the low-voltage winding and its power factor. Neglect magnetizing current.
4. (a) Give the difference between the cumulative and differentially compounded DC generator.
(b) A DC series generator has an armature resistance of 0.5Ω and series resistance of 0.03Ω. It drives a load of 50 A . It has 6 turns per coil and total 540 coils on the armature and is driven at 1500 rpm . Calculate the terminal voltage at load. Assume 4 poles lap type winding, flux per pole as 2 mWb and total brush drop is 2 V .
[6+10]
5. (a) Deduce an expression for the lifting power of a magnet.
(b) Two coils having 50 and 400 turns respectively are wound side by side on a closed iron circuit of cross sectional area 150 sq. cm and of mean length 200 cm .

$$
[6+10]
$$

6. What do you understand by attraction type and repulsion type instruments? Explain.
7. (a) Give a detailed comparison of series and parallel circuit.
(b) What are the applications, merits and demerits of a series circuit?
(c) What are the applications and advantages of a parallel circuit?
8. (a) A capacitor having a capacitance of $10 \mu \mathrm{~F}$ is connected in series with a non inductive resistance of 120Ω across $100 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the power, current and the phase difference between current and voltage.
(b) In a R-C series circuit, voltage across the combination is given by $40 \operatorname{Sin}(2000 t+45)$, $\mathrm{R}=10 \Omega$. The current leads the voltage by $\pi / 3$ radians. Find the value of C. Also find the expression for current.
[8+8]

I B.Tech Examinations,June 2011 BASIC ELECTRICAL ENGINEERING
 Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) A copper wire of diameter 1 cm has resistance of 0.15Ω. It was drawn under pressure so that its diameter was reduced to 50%. What is the new resistance of the wire?
(b) State and explain Faradays law of electromagnetic induction.
2. (a) Give a detailed comparison of series and parallel circuit.
(b) What are the applications, merits and demerits of a series circuit?
(c) What are the applications and advantages of a parallel circuit? $[6+5+5]$
3. (a) A capacitor having a capacitance of $10 \mu \mathrm{~F}$ is connected in series with a non inductive resistance of 120Ω across $100 \mathrm{~V}, 50 \mathrm{~Hz}$. Calculate the power, current and the phase difference between current and voltage.
(b) In a R-C series circuit, voltage across the combination is given by $40 \operatorname{Sin}(2000 t+45)$, $\mathrm{R}=10 \Omega$. The current leads the voltage by $\pi / 3$ radians. Find the value of C . Also find the expression for current.
4. (a) Give the difference between the cumulative and differentially compounded DC generator.
(b) A DC series generator has an armature resistance of 0.5Ω and series resistance of 0.03Ω. It drives a load of 50 A . It has 6 turns per coil and total 540 coils on the armature and is driven at 1500 rpm . Calculate the terminal voltage at load. Assume 4 poles lap type winding, flux per pole as 2 mWb and total brush drop is 2 V .
5. Starting from the ideal transformer, obtain the approximate equivalent circuit of a commercial transformer in which all the constants are lumped and represented on one side.
A single phase transformer has a turn ratio of 6 . The resistance and reactance of primary winding are 0.9Ω and 5Ω respectively and those of the secondary are 0.03 Ω and 0.13Ω respectively. If 330 V at 50 Hz be applied to the high voltage winding with the low-voltage winding short circuited. Find the current in the low-voltage winding and its power factor. Neglect magnetizing current.
6. What do you understand by attraction type and repulsion type instruments? Explain.
7. (a) Deduce an expression for the lifting power of a magnet.
(b) Two coils having 50 and 400 turns respectively are wound side by side on a closed iron circuit of cross sectional area 150 sq. cm and of mean length 200 cm .

$$
[6+10]
$$

8. (a) Sketch the torque - slip characteristics, and the torque - speed characteristics of three phase induction motor with relevant explanations.
(b) A 3 phase, 6 pole 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find
i. No load speed
ii. Full load speed
iii. Frequency of rotor current on full load.
