
1 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q1. What is JDBC? Explain the types of JDBC drivers?
Ans. What is JDBC?

 JDBC is an API, which is used in java programming for interacting with database.
 JDBC (Java Data Base Connection) is the standard method of accessing databases from Java

application.
 JDBC is a specification from Sun Microsystem that provides a standard API for java application to

communicate with different database.
 JDBC is a platform independent interface between relational database and java applications.

JDBC Drivers
1. Type1 (JDBC-ODBC Driver)

 Depends on support for ODBC

 Type1 is not portable driver

 Translate JDBC calls into ODBC calls and use Windows ODBC built in drivers

 ODBC must be set up on every client

 For server side servlets ODBC must be set up on web server

 Driver sun.jdbc.odbc.JdbcOdbc provided by JavaSoft with JDK

 No support from JDK 1.8 (Java 8) onwards.
E.g. MS Access

Advantages :

Figure: Type1 (JDBC-ODBC Driver)

 Allow to communicate with all database supported by ODBC driver

 It is vendor independent driver
Disadvantages:

 Due to large number of translations, execution speed is decreased

 Dependent on the ODBC driver

 ODBC binary code or ODBC client library to be installed in every client machine

 Uses java native interface to make ODBC call

2 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

 Because of listed disadvantage, type1 driver is not used in production environment. It can only
be used, when database doesn’t have any other JDBC driver implementation.

2. Type 2 (Native Code Driver)

 JDBC API calls are converted into native API calls, which are unique to the database.
 These drivers are typically provided by the database vendors and used in the same manner

as the JDBC-ODBC Bridge.

 Native code Driver are usually written in C, C++.

 The vendor-specific driver must be installed on each client machine.

 Type 2 Driver is suitable to use with server side applications.

 E.g. Oracle OCI driver, Weblogic OCI driver, Type2 for Sybase

Advantages

Figure: Type 2 (Native Code Driver)

 As there is no implementation of JDBC-ODBC bridge, it may be considerably faster than a Type
1 driver.

Disadvantages

 The vendor client library needs to be installed on the client machine hence type 2 drivers
cannot be used for the Internet.

 This driver is platform dependent.

 This driver supports all java applications except applets.

 It may increase cost of application, if it needs to run on different platform (since we may
require buying the native libraries for all of the platform).

 Mostly obsolete now
 Usually not thread safe

3 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

3. Type 3 (Java Protocol)

 This driver translate the jdbc calls into a database server independent and middleware
server specific calls.

 With the help of the middleware server, the translated jdbc calls further translated into
database server specific calls.

 This type of driver also known as net-protocol fully java technology-enabled driver.
 Type-3 driver is recommended to be used with applets. its auto-downloadable.

 Can interface to multiple databases – Not vendor specific.

 Follows a three-tier communication approach.

 The JDBC clients use standard network sockets to communicate with a middleware
application server.

 The socket information is then translated by the middleware application server into the
call format required by the DBMS, and forwarded to the database server.

 This kind of driver is extremely flexible, since it requires no code installed on the client and
a single driver can actually provide access to multiple databases.

Advantages

Figure: Type 3 (Java Protocol)

 Since the communication between client and the middleware server is database independent,
there is no need for the database vendor library on the client.

 A single driver can handle any database, provided the middleware supports it.
 We can switch from one database to other without changing the client-side driver class, by just

changing configurations of middleware server.
E.g.: IDS Driver, Weblogic RMI Driver

Disadvantages

 Compared to Type 2 drivers, Type 3 drivers are slow due to increased number of network calls.

 Requires database-specific coding to be done in the middle tier.

 The middleware layer added may result in additional latency, but is typically overcome by using
better middleware services.

4 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

4. Type 4 (Database Protocol)

 It is known as the Direct to Database Pure Java Driver

 Need to download a new driver for each database engine

 Type 4 driver, a pure Java-based driver communicates directly with the vendor's database
through socket connection.

 This kind of driver is extremely flexible, you don't need to install special software on the
client or server.

 This type of driver is lightweight and generally known as thin driver.

 You can use this driver when you want an auto downloadable option the client side
application

 i.e. thin driver for oracle from oracle corporation, weblogic and ms sqlserver4 for ms sql
server from BEA system

Advantages
Figure: Type 4 (Database Protocol)

 Completely implemented in Java to achieve platform independence.

 No native libraries are required to be installed in client machine.

 These drivers don't translate the requests into an intermediary format (such as ODBC).

 Secure to use since, it uses database server specific protocol.
 The client application connects directly to the database server.

 No translation or middleware layers are used, improving performance.

 The JVM manages all the aspects of the application-to-database connection.

Disadvantage

 This Driver uses database specific protocol and it is DBMS vendor dependent.

5 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Comparison between JDBC Drivers
Type Type 1 Type 2 Type 3 Type 4

Name JDBC-ODBC Bridge Native Code
Driver/ JNI

Java Protocol/
Middleware

Database
Protocol

Vendor Specific No Yes No Yes

Portable No No Yes Yes

Pure Java Driver No No Yes Yes

Working JDBC-> ODBC call
ODBC -> native
call

JDBC call ->
native specific
call

JDBC call ->
middleware
specific.
Middleware ->
native call

JDBC call ->DB
specific call

Multiple DB Yes
[only ODBC

supported DB]

NO Yes
[DB Driver should
be in middleware]

No

Example MS Access Oracle OCI driver IDA Server MySQL

Execution Speed Slowest among all Faster Compared
to Type1

Slower Compared
to Type2

Fastest among
all

Driver Thick Driver Thick Driver Thin Driver Thin Driver

6 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q2. Explain Thick and Thin driver. Comment on selection of driver. Write code
snippet for each type of JDBC connection.

Ans. Thick driver
 Thick client would need the client installation.

E.g. Type 1 and Type 2.

Thin driver

 The thin client driver, which mean you can connect to a database without the client installed on your
machine.
E.g. Type 4

Comment on selection of driver

 If you are accessing one type of database such as MySQL, Oracle, Sybase or IBM etc., the preferred
driver type is 4.

 If your Java application is accessing multiple types of databases at the same time, type 3 is the
preferred driver.

 Type 2 drivers are useful in situations, where a type 3 or type 4 driver is not available yet for your
database.

 The type 1 driver is not considered a deployment-level driver, and is typically used for development and
testing purposes only.

Write code snippet for each type of JDBC connection
1. MySQL

Class.forName("com.mysql.jdbc.Driver");

Connection conn=

DriverManager.getConnection("jdbc:mysql://localhost:PortNo/database

Name",“uid”, “pwd”);

2. Oracle
Class.forName("oracle.jdbc.driver.OracleDriver");

Connection conn=

DriverManager.getConnection("jdbc:oracle:thin:@hostname:port

Number:databaseName","root", "pwd");

3. DB2
Class.forName("com.ibm.db2.jdbc.net.DB2Driver");

Connection conn=

DriverManager.getConnection("jdbc:db2:hostname:port Number

/databaseName")

7 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q3. Explain Statement Interface with appropriate example.
Ans. Java.sql.Statement

 Used for general-purpose access to your database.
 Useful for static SQL statements, e.g. SELECT specific row from table etc.
 The Statement interface defines a standard abstraction to execute the SQL statements requested by a

user and return the results by using the ResultSet object.

 The Statement interface is created after the connection to the specified database is made.

 The object is created using the createStatement() method of the Connection interface, as shown in
following code snippet:

Statement stmt = con.createStatement();

1. import java.sql.*;
2. public class ConnDemo {
3. public static void main(String[] args) {
4. try {

5. // Load and register the driver
6. Class.forName("com.mysql.jdbc.Driver");

7. // Establish the connection to the database server

8. Connection conn= DriverManager.getConnection

9. ("jdbc:mysql://localhost:3306/database_name","root","pwd");

10. // Create a statement
11. Statement stmt = conn.createStatement();

12. // Execute the statement
13. ResultSet rs = stmt.executeQuery("SELECT * from Table");

14. // Retrieve the results
15. while(rs.next()){

16. System.out.print(rs.getInt(1)+"\t");

17. System.out.print(rs.getString(“Name”)+"\t");

18. System.out.println(rs.getString(3));

19. }//while

20. // Close the statement and connection

21. stmt.close();

22. conn.close();

23. }catch(Exception e){System.out.println(e.toString());

24. }//PSVM
25. }//class

8 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q4. Explain Prepared Statement with example.
Ans.  The PreparedStatement interface is subclass of the Statement interface, can be used to

represent a precompiled query, which can be executed multiple times.

 Prepared Statement is used when you plan to execute same SQL statements many times.

 PreparedStatement interface accepts input parameters at runtime.

 A SQL statement is precompiled and stored in a PreparedStatement object.

 This object can then be used to efficiently execute this statement multiple times.
 The object is created using the prepareStatement() method of Connection interface, as

shown in following snippet:

String query = “insert into emp values(? ,?)”;

PreparedStatement ps = con.prepareStatement(query);

ps.setInt(1,5);

ps.setString(2,”New Employee”);

int n = ps.executeUpdate();

Advantages:
 The performance of the application will be faster, if you use PreparedStatement interface

because query is compiled only once.
 This is because creating a PreparedStatement object by explicitly giving the SQL statement

causes the statement to be precompiled within the database immediately.
 Thus, when the PreparedStatement is later executed, the DBMS does not have to recompile

the SQL statement.
 Late binding and compilation is done by DBMS.
 Provides the programmatic approach to set the values.

Disadvantage:
The main disadvantage of PreparedStatement is that it can represent only one SQL statement at a
time.

Example of PreparedStatement
Write a program to insert student records to database using prepared statement

1. import java.sql.*;
2. public class PreparedInsert {
3. public static void main(String[] args) {
4. try {
5. Class.forName("com.mysql.jdbc.Driver");
6. Connection conn= DriverManager.getConnection
7. ("jdbc:mysql://localhost:3306/ASET", "root","pwd");

8. String query="insert into asetstudent values(?,?,?,?)";
9. PreparedStatement ps=conn.prepareStatement(query);
10. ps.setString(1, "14092"); //Enr_no

11. ps.setString(2, "abc_comp"); //Name

12. ps.setString(3, "computer"); //Branch

13. ps.setString(4, "cx"); //Division

9 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

14. int i=ps.executeUpdate();

15. System.out.println("no. of rows updated ="+i);

16. ps.close();

17. conn.close();

18. }catch(Exception e){System.out.println(e.toString());} }//PSVM

}//class

Q5. Explain Callable Statement with example.
Ans.  CallableStatement interface is used to call the stored procedures.

 Therefore, the stored procedure can be called by using an object of the CallableStatement

interface.

 The object is created using the prepareCall() method of Connection interface.

CallableStatement cs=conn.prepareCall("{call Proc_Name(?,?)}");

cs.setInt(1,2222);

cs.registerOutParameter(2,Types.VARCHAR);

cs.execute();

 Three types of parameters exist: IN, OUT, and INOUT.

 PreparedStatement object only uses the IN parameter. The CallableStatement object can
use all the three.

Parameter Description

IN A parameter whose value is unknown when the SQL statement is
created. You bind values to IN parameters with the setXXX()
methods.

OUT A parameter whose value is supplied by the SQL statement it
returns. You retrieve values from the OUT parameters with the
getXXX() methods.

INOUT A parameter that provides both input and output values. You bind
variables with the setXXX() methods and retrieve values with the
getXXX() methods.

10 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Example of CallableStatement
Writa a Callable Statement program to retrieve branch of the student using {getBranch()
procedure} from given enrollment number. Also write code for Stored Procedure
Stored Procedure: getbranch()

1. DELIMITER @@
2. DROP PROCEDURE getbranch @@
3. CREATE PROCEDURE databaseName.getbranch

4. (IN enr_no INT, OUT my_branch VARCHAR(10))
5. BEGIN
6. SELECT branch INTO my_branch
7. FROM Student
8. WHERE enr_no=enrno;
9. END @@
10. DELIMITER ;

Callable Statement program
1. import java.sql.*;
2. public class CallableDemo {
3. public static void main(String[] args) {

4. try {
5. Class.forName("com.mysql.jdbc.Driver");

6. Connection conn= DriverManager.getConnection

7. ("jdbc:mysql://localhost:3306/Aset", "root","pwd");

8.

9. CallableStatement cs=conn.prepareCall("{call getbranch(?,?)}");

10. cs.setInt(1,2222);

11. cs.registerOutParameter(2,Types.VARCHAR);

12. cs.execute();

13. System.out.println("branch="+cs.getString(2));

14. cs.close();

15. conn.close();

16. }catch(Exceptione){System.out.println(e.toString());}

17. }//PSVM

18. }//class

Q6. Differentiate Statement, Prepared Statement and Callable Statement.

Ans. Statement Prepared Statement Callable Statement

Super interface for Prepared
and Callable Statement

extends Statement
(sub-interface)

extends PreparedStatement
(sub-interface)

Used for executing simple
SQL statements like CRUD
(create, retrieve, update and
delete

Used for executing dynamic and
pre-compiled SQL statements

Used for executing stored
procedures

11 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

The Statement interface
cannot accept parameters.

The PreparedStatement
interface accepts input
parameters at runtime.

The CallableStatement interface
can also accept runtime input
parameters.

stmt =
conn.createStatement();

PreparedStatement
ps=con.prepareStatement
("insert into studentAset
values(?,?,?)");

CallableStatement
cs=conn.prepareCall("{call
getbranch(?,?)}");

java.sql.Statement is slower
as compared to Prepared
Statement in java JDBC.

PreparedStatement is faster
because it is used for
executing precompiled SQL
statement in java JDBC.

None

java.sql.Statement is suitable
for executing DDL commands
- CREATE, drop, alter and
truncate in java JDBC.

java.sql.PreparedStatement
is suitable for executing DML
commands - SELECT, INSERT,
UPDATE and DELETE in java
JDBC.

java.sql.CallableStatement is
suitable for executing stored
procedure.

Q7. Explain JDBC Architecture.
Ans. JDBC API

 The JDBC API uses a driver manager and database-specific drivers to provide transparent
connectivity to heterogeneous databases.

 JDBC API provides classes and interfaces to connect or communicate Java application with
database.

 The JDBC API supports both two-tier and three-tier processing models for database access
but in general, JDBC Architecture consists of two layers −

1. JDBC API: This provides the application-to-JDBC Manager connection.
2. JDBC Driver API: This supports the JDBC Manager-to-Driver Connection.

JDBC Driver Manager (Class)

 This class manages a list of database drivers.

 It ensures that the correct driver is used to access each data source.
 The driver manager is capable of supporting multiple concurrent drivers connected to

multiple heterogeneous databases.

 Matches connection requests from the java application with the proper database driver
using communication sub protocol.

 The first driver that recognizes a certain subprotocol under JDBC will be used to establish a

database Connection.

12 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Figure: JDBC Architecture

Driver (Interface)

 This interface handles the communications with the database server.

 You will interact directly with Driver objects very rarely.

 Instead, you use DriverManager objects, which manages objects of this type.

 It also abstracts the details associated with working with Driver objects.
Connection (Interface)

 This interface with all methods for contacting a database.
 The connection object represents communication context, i.e., all communication with

database is through connection object only.
Statement (Interface)
 You use objects created from this interface to submit the SQL statements to the database.

Some derived interfaces accept parameters in addition to executing stored procedures.
ResultSet (Interface)
 These objects hold data retrieved from a database after you execute an SQL query using

Statement objects.

 It acts as an iterator to allow you to move through its data.
SQLException (Class)
This class handles any errors that occur in a database application.

13 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q8. Explain methods of ResultSet Interface.
Ans. Categories

ResultSet: Navigational methods

boolean first()
throws SQLException

Moves the cursor to the first row.

boolean last()
throws SQLException

Moves the cursor to the last row.

boolean next()
throws SQL Exception

Moves the cursor to the next row. This method returns
false if there are no more rows in the result set.

boolean previous()
throws SQLException

Moves the cursor to the previous row. This method returns
false if the previous row is off the result set.

boolean absolute(int row)
throws SQLException

Moves the cursor to the specified row.

boolean relative(int row)
throws SQLException

Moves the cursor the given number of rows forward or
backward, from where it is currently pointing.

int getRow()
throws SQLException

Returns the row number that the cursor is pointing to.

ResultSet: Get methods

int getInt
(String columnName)
throws SQLException

Returns the integer value to the current row in the column
named columnName.

int getInt
(int columnIndex)
throws SQLException

Returns the integer value to the current row in the specified
column index. The column index starts at 1, meaning the
first column of a row is 1, the second column of a row is 2,
and so on.

1. Navigational
methods

Used to move the cursor around.

2. Get methods Used to view the data in the columns of the current row
being pointed by the cursor.

3. Update methods Used to update the data in the columns of the current row.
The updates can then be updated in the underlying
database as well.

14 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

String getString
(String columnLabel)
throws SQLException

Retrieves the value of the designated column in the current
row of this ResultSet object as a String in the Java
programming language.

String getString
(int columnIndex)
throws SQLException

Retrieves the value of the designated column in the current
row of this ResultSet object as a String in the Java
programming language.

ResultSet: Update methods

void updateString
(int col_Index, String s)
throws SQLException

Changes the String in the specified column to the value of s.

void updateInt
(int col_Index, int x)
throws SQLException

Updates the designated column with an integer value.

void updateFloat
(int col_Index, float x)
throws SQLException

Updates the designated column with a float value.

void updateDouble
(int col_Index,double x)
throws SQLException

Updates the designated column with a double value.

15 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q9. Differentiate executeQuery(), executeUpdate() and execute() with
appropriate example.

Ans.

Q10. Explain Resultset Type and Concurrency
Ans. Resultset Type

ResultSet.TYPE_FORWARD_ONLY The cursor can only move forward in the result
set.
(Default Type)

ResultSet.TYPE_SCROLL_INSENSITIVE The cursor can scroll forward and backward, and
the result set is not sensitive to changes made by
others to the database that occur after the result
set was created.

ResultSet.TYPE_SCROLL_SENSITIVE The cursor can scroll forward and backward, and
the result set is sensitive to changes made by
others to the database that occur after the result
set was created.

Concurrency of ResultSet
ResultSet.CONCUR_READ_ONLY Creates a read-only result set. (Default Type)

ResultSet.CONCUR_UPDATABLE Creates an updateable result set.

executeQuery() executeUpdate() execute()
ResultSet executeQuery
(String sql)
throws SQLException

int executeUpdate(String sql)
throws SQLException

Boolean execute(String sql)
throws SQLException

This is used generally for
reading the content of the
database. The output will be
in the form of ResultSet.
Generally SELECT statement is
used.

This is generally used for
altering the databases.
Generally DROP, INSERT,
UPDATE, DELETE statements
will be used in this. The
output will be in the form of
int. This int value denotes the
number of rows affected by
the query.

If you dont know which
method to be used for
executing SQL statements,
this method can be used. This
will return a boolean. TRUE
indicates the result is a
ResultSet and FALSE indicates
it has the int value which
denotes number of rows
affected by the query.

E.g.:ResultSet rs=
stmt.executeQuery(query);

E.g.: int i=
stmt.executeUpdate(query);

E.g.: Boolean b=
stmt.execute(query);

16 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Example
Statement stmt = conn.createStatement(

ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_READ_ONLY);

Q11. Explain Transaction Management in JDBC with appropriate example.
Ans.  Transaction Management in java is required when we are dealing with relational databases.

 By default when we create a database connection, it runs in auto-commit mode.

 It means that whenever we execute a query and it’s completed, the commit is fired
automatically.

 So every SQL query we fire is a transaction and if we are running some DML or DDL queries,
the changes are getting saved into database after every SQL statement finishes.

 Sometimes we want a group of SQL queries to be part of a transaction so that we can commit
them when all the queries runs fine. If we get any exception, we have a choice of rollback
all the queries executed as part of the transaction.

Figure: Transaction Management

Advantage of Transaction Management
 Fast performance: It makes the performance fast because database is hit at the time of

commit.

In JDBC, Connection interface provides methods to manage transaction.

void setAutoCommit(boolean status) It is true by default means each transaction is
committed by default.

void commit() Commits the transaction.

void rollback() Cancels the transaction.

17 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Example
1. import java.sql.*;

2. class RollbackDemo{
3. public static void main(String args[]){
4. try{ Class.forName("com.mysql.jdbc.Driver");
5. Connection con=DriverManager.getConnection(

6. "jdbc:mysql://localhost:3306/GTU","root","root");

7. con.setAutoCommit(false);//bydeafault it is true

8. Statement stmt=con.createStatement();

9. int i=stmt.executeUpdate("insert into aset

values(606,'ghi','ee')");

10. con.commit(); //Commit Transaction

11. i+=stmt.executeUpdate("insert into aset

values(607,'mno','ch')");

12. System.out.println("no. of rows inserted="+i);

13. con.rollback(); //Rollback Transaction

14. con.close();

15. }catch(Exception e){ System.out.println(e);}

16. }}

Q12. Explain the architecture of J2EE

Ans.
The J2EE platform is a set of services, application programming interfaces (APIs) and protocols.
J2EE is used to develop and deploy multi-tier web-based enterprise applications using a series of
protocols and application programming interfaces (APIs). J2EE contains several APIs such as Java
Servlets, Java Server Pages (JSP), Enterprise Java Beans (EJB), Java Database Connectivity (JDBC),
Java Message Service (JMS), Java Naming and Directory Interface (JNDI) and so on. The J2EE
application model divides applications into three basic parts like components, containers and
connectors. The application developers works on the components part, whereas system vendors
are responsible for implementing containers and connectors. Containers act as a mediator
between clients and components by providing services like transaction support and resource
pooling. Connectors provide bidirectional communication between J2EE components and
enterprise systems. Below in figure 1, you can depict the functioning of J2EE model:

18 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

A J2EE application contains four components or tiers: Presentation, Application, Business, and
Resource adapter components. The presentation component is the client side component that is
visible to the client and runs on the client’s server. The Application component is web side layer
that runs on the J2EE server. The business component is the business layer which includes server-
side business logic such as JavaBeans, and it is also run on the J2EE server. The resource adaptor
component comprises an enterprise information system. When you develop J2EE application, you
may find J2EE clients such as a web client, an application client, wireless clients or Java Web Start-
enabled clients. For running J2EE application, you need a J2EE container which is a server
platform, Java component can be run on this container using APIs provided through the Web
container and EJB container. The EJB container is a server platform used for controlling the
execution of Enterprise Bean. Also, the EJB container job is to provide local and remote access to
enterprise beans.

19 Dr Betty Paulraj, CSE Department | IT404 – Advanced Java Programming

Module 1 – J2EE and JDBC
Networking

Q13. Define Web Server and Web Container

Ans.
Web Server is a server software that handles HTTP requests and responses to deliver web
pages or web content to clients (i.e. web browser) using HTTP protocol. Web browser
communicates with web server using the Hypertext Transfer Protocol (HTTP). Hypertext
Transfer Protocol (HTTP) is specially meant to communicate between Client and Server using
Web (or Internet). To successfully execute web application, the number of server side
technologies (such as JSP, Servlets and PHP) and their libraries are installed on the web
server. Without these libraries, a web server cannot execute those server technologies
based applications. In other words, we may say that the web server creates an execution
infrastructure for the server technologies. An example of web server is Apache HTTP Server.

Web Container is a web server component that handles Servlets, Java Server Pages (JSP)
files, and other Web-tier components. Web container is also called a Servlet Container or
Servlet Engine. It is the responsibility of the Web container to map a URL to a particular
servlet. Also, Web container ensures that the mapped URL requester has the correct access
rights. It means that it provides the run time environment to web applications. The most
common web containers are Glassfish, Eclipse, JBOSS, Apache Tomcat, WebSphere and Web
Logic.

	Q1. What is JDBC? Explain the types of JDBC drivers? Ans. What is JDBC?
	JDBC Drivers

	Q2. Explain Thick and Thin driver. Comment on selection of driver. Write code snippet for each type of JDBC connection.
	Q4. Explain Prepared Statement with example.
	Advantages:
	Disadvantage:
	Example of PreparedStatement
	Write a program to insert student records to database using prepared statement

	Q5. Explain Callable Statement with example.
	Example of CallableStatement
	Stored Procedure: getbranch()
	Callable Statement program

	Q6. Differentiate Statement, Prepared Statement and Callable Statement. Ans.
	JDBC Driver Manager (Class)

	Q8. Explain methods of ResultSet Interface. Ans. Categories
	ResultSet: Navigational methods

	Q9. Differentiate executeQuery(), executeUpdate() and execute() with appropriate example.
	Q10. Explain Resultset Type and Concurrency Ans. Resultset Type
	Example
	Q11. Explain Transaction Management in JDBC with appropriate example.
	Advantage of Transaction Management
	Example

	Q12. Explain the architecture of J2EE
	Ans.
	Q13. Define Web Server and Web Container
	Ans. (1)

