

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

A

Course File

on

Software Engineering (3IT4-07)

Programme: B.Tech. (Information Technology)

Semester: - III

Session 2021-22

 (Ms. Sanju Choudhary)

(Associate Professor)

(Department of Information Technology)

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

UNIT-1

INTRODUCTION TO SOFTWARE ENGINEERING

CONTENTS

Lecture 1: Introduction to Software Engineering

Lecture 2: Software Development Life Cycle

Lecture 3: Classical Waterfall Model, Spiral Model

Lecture 4: Incremental Model, Iterative Waterfall Model, RAD Model

Lecture 5: Prototyping Model, Big-Bang Model

Lecture 6: V-Model, Agile Model

Lecture 7: Software Requirements Specification (SRS), Formal Requirements

Specification

Lecture 8: Verification and Validation

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

INTRODUCTION TO SOFTWARE ENGINEERING

The term software engineering is composed of two words, software and engineering.

Software is more than just a program code. A program is an executable code, which

serves some computational purpose. Software is considered to be a collection of

executable programming code, associated libraries and documentations. Software,

when made for a specific requirement is called software product.

Engineering on the other hand, is all about developing products, using well-defined,

scientific principles and methods.

So, we can define software engineering as an engineering branch associated with the

development of software product using well-defined scientific principles, methods and

procedures. The outcome of software engineering is an efficient and reliable software

product.

IEEE defines software engineering as:

The application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software.

The product that software professionals build and then support over the long term.

Software encompasses:

(1) Instructions (computer programs) that when executed provide desired features,

function, and performance;

(2) Data structures that enable the programs to adequately store and manipulate

information and

(3) Documentation that describes the operation and use of the programs.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

We can alternatively view it as a systematic collection of past experience. The

experience is arranged in the form of methodologies and guidelines. A small program

can be written without using software engineering principles. But if one wants to

develop a large software product, then software engineering principles are absolutely

necessary to achieve a good quality software cost effectively.

Without using software engineering principles it would be difficult to develop large

programs. In industry it is usually needed to develop large programs to accommodate

multiple functions. A problem with developing such large commercial programs is that

the complexity and difficulty levels of the programs increase exponentially with their

sizes. Software engineering helps to reduce this programming complexity. Software

engineering principles use two important techniques to reduce problem complexity:

abstraction and decomposition. The principle of abstraction implies that a problem can

be simplified by omitting irrelevant details. In other words, the main purpose of

abstraction is to consider only those aspects of the problem that are relevant for certain

purpose and suppress other aspects that are not relevant for the given purpose. Once the

simpler problem is solved, then the omitted details can be taken into consideration to

solve the next lower level abstraction, and so on. Abstraction is a powerful way of

reducing the complexity of the problem.

Software products

Generic products: - Stand-alone systems that are marketed and sold to any customer who

wishes to buy them. Examples – PC software such as editing, graphics programs, project

management tools; CAD software; software for specific markets such as appointments systems

for dentists.

Customized products: - Software that is commissioned by a specific customer to meet their

own needs. Examples – embedded control systems, air traffic control software, traffic monitoring

systems.

Why Software is Important?

The economies of ALL developed nations are dependent on software. More and more systems

are software controlled (transportation, medical, telecommunications, military, industrial,

entertainment,)

 Software engineering is concerned with theories, methods and tools for professional software

development.

Expenditure on software represents a significant fraction of GNP in all developed countries.

Features of Software:-

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

• Its characteristics that make it different from other things human being build.

Features of such logical system:

• Software is developed or engineered; it is not manufactured in the classical sense which has

quality problem.

• Software doesn't "wear out.” but it deteriorates (due to change). Hardware has bathtub curve of

failure rate (high failure rate in the beginning, then drop to steady state, then cumulative effects

of dust, vibration, abuse occurs).

• Although the industry is moving toward component-based construction (e.g. standard screws

and off the-shelf integrated circuits), most software continues to be custom-built. Modern

reusable components encapsulate data and processing into software parts to be reused by

different programs. E.g. graphical user interface, window, pull-down menus in library etc.

NEED OF SOFTWARE ENGINEERING

The need of software engineering arises because of higher rate of change in user requirements

and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or building, likewise, as

the size of software become large engineering has to step to give it a scientific

process.

 Scalability- If the software process were not based on scientific and engineering

concepts, it would be easier to re-create new software than to scale an existing one.

 Cost- As hardware industry has shown its skills and huge manufacturing has lower

down the price of computer and electronic hardware. But the cost of software

remains high if proper process is not adapted.

 Dynamic Nature- The always growing and adapting nature of software hugely

depends upon the environment in which the user works. If the nature of software is

always changing, new enhancements need to be done in the existing one. This is

where software engineering plays a good role.

 Quality Management- Better process of software development provides better and

quality software product.

CHARACTERESTICS OF GOOD SOFTWARE

A software product can be judged by what it offers and how well it can be used. This software

must satisfy on the following grounds:

 Operational

 Transitional

 Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

Operational

This tells us how well software works in operations. It can be measured on:

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

Maintenance

This aspect briefs about how well software has the capabilities to maintain itself in the ever-

changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of computer science, which uses well-defined

engineering concepts required to produce efficient, durable, scalable, in-budget and on-

time software products

SOFTWARE DEVELOPMENT LIFE CYCLE

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

LIFE CYCLE MODEL

A software life cycle model (also called process model) is a descriptive and

diagrammatic representation of the software life cycle. A life cycle model represents all

the activities required to make a software product transit through its life cycle phases. It

also captures the order in which these activities are to be undertaken. In other words, a

life cycle model maps the different activities performed on a software product from its

inception to retirement. Different life cycle models may map the basic development

activities to phases in different ways. Thus, no matter which life cycle model is

followed, the basic activities are included in all life cycle models though the activities

may be carried out in different orders in different life cycle models. During any life

cycle phase, more than one activity may also be carried out.

THE NEED FOR A SOFTWARE LIFE CYCLE MODEL

The development team must identify a suitable life cycle model for the particular project

and then adhere to it. Without using of a particular life cycle model the development of a

software product would not be in a systematic and disciplined manner. When a software

product is being developed by a team there must be a clear understanding among team

members about when and what to do. Otherwise it would lead to chaos and project

failure. This problem can be illustrated by using an example. Suppose a software

development problem is divided into several parts and the parts are assigned to the team

members. From then on, suppose the team members are allowed the freedom to develop

the parts assigned to them in whatever way they like. It is possible that one member

might start writing the code for his part, another might decide to prepare the test

documents first, and some other engineer might begin with the design phase of the parts

assigned to him. This would be one of the perfect recipes for project failure. A software

life cycle model defines entry and exit criteria for every phase. A phase can start only if

its phase-entry criteria have been satisfied. So without software life cycle model the

entry and exit criteria for a phase cannot be recognized. Without software life cycle

models it becomes difficult for software project managers to monitor the progress of the

project.

Different software life cycle models

Many life cycle models have been proposed so far. Each of them has some advantages

as well as some disadvantages. A few important and commonly used life cycle models

are as follows:

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

 Classical Waterfall Model

 Iterative Waterfall Model

 Prototyping Model

 Evolutionary Model

 Spiral Model

1. CLASSICAL WATERFALLMODEL

The classical waterfall model is intuitively the most obvious way to develop software.

Though the classical waterfall model is elegant and intuitively obvious, it is not a

practical model in the sense that it cannot be used in actual software development

projects. Thus, this model can be considered to be a theoretical way of developing

software. But all other life cycle models are essentially derived from the classical

waterfall model. So, in order to be able to appreciate other life cycle models it is

necessary to learn the classical waterfall model. Classical waterfall model divides the

life cycle into the following phases.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Feasibility study - The main aim of feasibility study is to determine whether it would

be financially and technically feasible to develop the product.

 At first project managers or team leaders try to have a rough understanding of

what is required to be done by visiting the client side. They study different input

data to the system and output data to be produced by the system. They study

what kind of processing is needed to be done on these data and they look at the

various constraints on the behavior of the system.

 After they have an overall understanding of the problem they investigate the

different solutions that are possible. Then they examine each of the solutions in

terms of what kind of resources required, what would be the cost of development

and what would be the development time for each solution.

 Based on this analysis they pick the best solution and determine whether the

solution is feasible financially and technically. They check whether the customer

budget would meet the cost of the product and whether they have sufficient

technical expertise in the area of development.

Requirements analysis and specification: - The aim of the requirements analysis and

specification phase is to understand the exact requirements of the customer and to

document them properly. This phase consists of two distinct activities, namely

 Requirements gathering and analysis

 Requirements specification

The goal of the requirements gathering activity is to collect all relevant information

from the customer regarding the product to be developed. This is done to clearly

understand the customer requirements so that incompleteness and inconsistencies are

removed.

The requirements analysis activity is begun by collecting all relevant data regarding the

product to be developed from the users of the product and from the customer through

interviews and discussions. For example, to perform the requirements analysis of a

business accounting software required by an organization, the analyst might interview

all the accountants of the organization to ascertain their requirements. The data collected

from such a group of users usually contain several contradictions and ambiguities, since

each user typically has only a partial and incomplete view of the system. Therefore it is

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

necessary to identify all ambiguities and contradictions in the requirements and resolve

them through further discussions with the customer. After all ambiguities,

inconsistencies, and incompleteness have been resolved and all the requirements

properly understood, the requirements specification activity can start. During this

activity, the user requirements are systematically organized into a Software

Requirements Specification (SRS) document. The customer requirements identified

during the requirements gathering and analysis activity are organized into a SRS

document. The important components of this document are functional requirements, the

nonfunctional requirements, and the goals of implementation.

Design: - The goal of the design phase is to transform the requirements specified in the

SRS document into a structure that is suitable for implementation in some programming

language. In technical terms, during the design phase the software architecture is derived

from the SRS document. Two distinctly different approaches are available: the

traditional design approach and the object-oriented design approach.

 Traditional design approach -Traditional design consists of two different

activities; first a structured analysis of the requirements specification is carried

out where the detailed structure of the problem is examined. This is followed by

a structured design activity. During structured design, the results of structured

analysis are transformed into the software design.

 Object-oriented design approach -In this technique, various objects that occur

in the problem domain and the solution domain are first identified, and the

different relationships that exist among these objects are identified. The object

structure is further refined to obtain the detailed design.

Coding and unit testing:-The purpose of the coding phase (sometimes called the

implementation phase) of software development is to translate the software design into

source code. Each component of the design is implemented as a program module. The

end-product of this phase is a set of program modules that have been individually tested.

During this phase, each module is unit tested to determine the correct working of all the

individual modules. It involves testing each module in isolation as this is the most

efficient way to debug the errors identified at this stage.

Integration and system testing: -Integration of different modules is undertaken once

they have been coded and unit tested. During the integration and system testing phase,

the modules are integrated in a planned manner. The different modules making up a

software product are almost never integrated in one shot. Integration is normally carried

out incrementally over a number of steps. During each integration step, the partially

integrated system is tested and a set of previously planned modules are added to it.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Finally, when all the modules have been successfully integrated and tested, system

testing is carried out. The goal of system testing is to ensure that the developed system

conforms to its requirements laid out in the SRS document. System testing usually

consists of three different kinds of testing activities:

System testing is normally carried out in a planned manner according to the system test

plan document. The system test plan identifies all testing-related activities that must be

performed, specifies the schedule of testing, and allocates resources. It also lists all the

test cases and the expected outputs for each test case.

Maintenance: -Maintenance of a typical software product requires much more than the

effort necessary to develop the product itself. Many studies carried out in the past

confirm this and indicate that the relative effort of development of a typical software

product to its maintenance effort is roughly in the 40:60 ratios. Maintenance involves

performing any one or more of the following three kinds of activities:

 Correcting errors that were not discovered during the product development

phase. This is called corrective maintenance.

 Improving the implementation of the system, and enhancing the functionalities

of the system according to the customer’s requirements. This is called perfective

maintenance.

 Porting the software to work in a new environment. For example, porting may be

required to get the software to work on a new computer platform or with a new

operating system. This is called adaptive maintenance.

Shortcomings of the classical waterfall model

The classical waterfall model is an idealistic one since it assumes that no development

error is ever committed by the engineers during any of the life cycle phases. However, in

practical development environments, the engineers do commit a large number of errors

in almost every phase of the life cycle. The source of the defects can be many: oversight,

wrong assumptions, use of inappropriate technology, communication gap among the

project engineers, etc. These defects usually get detected much later in the life cycle. For

example, a design defect might go unnoticed till we reach the coding or testing phase.

Once a defect is detected, the engineers need to go back to the phase where the defect

had occurred and redo some of the work done during that phase and the subsequent

phases to correct the defect and its effect on the later phases. Therefore, in any practical

software development work, it is not possible to strictly follow the classical waterfall

model.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

2. ITERATIVE WATERFALL MODEL

To overcome the major shortcomings of the classical waterfall model, we come up

with the iterative waterfall model.

Here, we provide feedback paths for error correction as & when detected later in a

phase. Though errors are inevitable, but it is desirable to detect them in the same

phase in which they occur. If so, this can reduce the effort to correct the bug.

The advantage of this model is that there is a working model of the system at a very

early stage of development which makes it easier to find functional or design flaws.

Finding issues at an early stage of development enables to take corrective measures

in a limited budget.

The disadvantage with this SDLC model is that it is applicable only to large and

bulky software development projects. This is because it is hard to break a small

software system into further small serviceable increments/modules.

3. PRTOTYPING MODEL

A prototype is a toy implementation of the system. A prototype usually exhibits

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

limited functional capabilities, low reliability, and inefficient performance compared

to the actual software. A prototype is usually built using several shortcuts. The

shortcuts might involve using inefficient, inaccurate, or dummy functions. The

shortcut implementation of a function, for example, may produce the desired results

by using a table look-up instead of performing the actual computations. A prototype

usually turns out to be a very crude version of the actual system.

Need for a prototype in software development

There are several uses of a prototype. An important purpose is to illustrate the input

data formats, messages, reports, and the interactive dialogues to the customer. This is

a valuable mechanism for gaining better understanding of the customer’s needs:

 how the screens might look like

 how the user interface would behave

 how the system would produce outputs

Another reason for developing a prototype is that it is impossible to get the perfect

product in the first attempt. Many researchers and engineers advocate that if you

want to develop a good product you must plan to throw away the first version. The

experience gained in developing the prototype can be used to develop the final

product.

A prototyping model can be used when technical solutions are unclear to the

development team. A developed prototype can help engineers to critically examine

the technical issues associated with the product development. Often, major design

decisions depend on issues like the response time of a hardware controller, or the

efficiency of a sorting algorithm, etc. In such circumstances, a prototype may be the

best or the only way to resolve the technical issues.

A prototype of the actual product is preferred in situations such as:

• User requirements are not complete

• Technical issues are not clear

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

4. SPIRALMODEL

The Spiral model of software development is shown in fig. The diagrammatic

representation of this model appears like a spiral with many loops. The exact number of

loops in the spiral is not fixed. Each loop of the spiral represents a phase of the software

process. For example, the innermost loop might be concerned with feasibility study, the

next loop with requirements specification, the next one with design, and so on. Each

phase in this model is split into four sectors (or quadrants) as shown in fig. The

following activities are carried out during each phase of a spiral model.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

First quadrant (Objective Setting)

• During the first quadrant, it is needed to identify the objectives of the phase.

• Examine the risks associated with these objectives.

Second Quadrant (Risk Assessment and Reduction)

• A detailed analysis is carried out for each identified project risk.

• Steps are taken to reduce the risks. For example, if there is a risk that the

requirements are inappropriate, a prototype system may be developed.

Third Quadrant (Development and Validation)

• Develop and validate the next level of the product after resolving the

identified risks.

Fourth Quadrant (Review and Planning)

• Review the results achieved so far with the customer and plan the next

iteration around the spiral.

• Progressively more complete version of the software gets built with each

iteration around the spiral.

Circumstances to use spiral model

The spiral model is called a Meta model since it encompasses all other life cycle models.

Risk handling is inherently built into this model. The spiral model is suitable for

development of technically challenging software products that are prone to several kinds

of risks. However, this model is much more complex than the other models – this is

probably a factor deterring its use in ordinary projects.

5. V-Model

V-Model also referred to as the Verification and Validation Model. In this, each phase of SDLC

must complete before the next phase starts. It follows a sequential design process same as the

waterfall model. Testing of the device is planned in parallel with a corresponding stage of

development.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Verification: It involves a static analysis method (review) done without executing code. It is the

process of evaluation of the product development process to find whether specified requirements

meet.

Validation: It involves dynamic analysis method (functional, non-functional), testing is done by

executing code. Validation is the process to classify the software after the completion of the

development process to determine whether the software meets the customer expectations and

requirements.

So V-Model contains Verification phases on one side of the Validation phases on the other side.

Verification and Validation process is joined by coding phase in V-shape. Thus it is known as V-

Model.

There are the various phases of Verification Phase of V-model:

1. Business requirement analysis: This is the first step where product requirements

understood from the customer's side. This phase contains detailed communication to

understand customer's expectations and exact requirements.

2. System Design: In this stage system engineers analyze and interpret the business of the

proposed system by studying the user requirements document.

3. Architecture Design: The baseline in selecting the architecture is that it should

understand all which typically consists of the list of modules, brief functionality of each

module, their interface relationships, dependencies, database tables, architecture

diagrams, technology detail, etc. The integration testing model is carried out in a

particular phase.

4. Module Design: In the module design phase, the system breaks down into small

modules. The detailed design of the modules is specified, which is known as Low-Level

Design

5. Coding Phase: After designing, the coding phase is started. Based on the requirements, a

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

suitable programming language is decided. There are some guidelines and standards for

coding. Before checking in the repository, the final build is optimized for better

performance, and the code goes through many code reviews to check the performance.

There are the various phases of Validation Phase of V-model:

1. Unit Testing: In the V-Model, Unit Test Plans (UTPs) are developed during the module

design phase. These UTPs are executed to eliminate errors at code level or unit level. A

unit is the smallest entity which can independently exist, e.g., a program module. Unit

testing verifies that the smallest entity can function correctly when isolated from the rest

of the codes/ units.

2. Integration Testing: Integration Test Plans are developed during the Architectural

Design Phase. These tests verify that groups created and tested independently can coexist

and communicate among themselves.

3. System Testing: System Tests Plans are developed during System Design Phase. Unlike

Unit and Integration Test Plans, System Tests Plans are composed by the client?s

business team. System Test ensures that expectations from an application developer are

met.

4. Acceptance Testing: Acceptance testing is related to the business requirement analysis

part. It includes testing the software product in user atmosphere. Acceptance tests reveal

the compatibility problems with the different systems, which is available within the user

atmosphere. It conjointly discovers the non-functional problems like load and

performance defects within the real user atmosphere.

When to use V-Model?

o When the requirement is well defined and not ambiguous.

o The V-shaped model should be used for small to medium-sized projects where

requirements are clearly defined and fixed.

o The V-shaped model should be chosen when sample technical resources are available

with essential technical expertise.

Advantage (Pros) of V-Model:

1. Easy to Understand.

2. Testing Methods like planning, test designing happens well before coding.

3. This saves a lot of time. Hence a higher chance of success over the waterfall model.

4. Avoids the downward flow of the defects.

5. Works well for small plans where requirements are easily understood.

Disadvantage (Cons) of V-Model:

1. Very rigid and least flexible.

2. Not a good for a complex project.

3. Software is developed during the implementation stage, so no early prototypes of the

software are produced.

4. If any changes happen in the midway, then the test documents along with the required

documents, has to be updated.

7. RAD (Rapid Application Development) Model

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

RAD is a linear sequential software development process model that emphasizes a concise

development cycle using an element based construction approach. If the requirements are well

understood and described, and the project scope is a constraint, the RAD process enables a

development team to create a fully functional system within a concise time period.

RAD (Rapid Application Development) is a concept that products can be developed faster and of

higher quality through:

o Gathering requirements using workshops or focus groups

o Prototyping and early, reiterative user testing of designs

o The re-use of software components

o A rigidly paced schedule that refers design improvements to the next product version

o Less formality in reviews and other team communication

The various phases of RAD are as follows:

1.Business Modeling: The information flow among business functions is defined by answering

questions like what data drives the business process, what data is generated, who generates it,

where does the information go, who process it and so on.

2. Data Modeling: The data collected from business modeling is refined into a set of data

objects (entities) that are needed to support the business. The attributes (character of each entity)

are identified, and the relation between these data objects (entities) is defined.

3. Process Modeling: The information object defined in the data modeling phase are

transformed to achieve the data flow necessary to implement a business function. Processing

descriptions are created for adding, modifying, deleting, or retrieving a data object.

4. Application Generation: Automated tools are used to facilitate construction of the software;

even they use the 4th GL techniques.

5. Testing & Turnover: Many of the programming components have already been tested since

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

RAD emphasis reuse. This reduces the overall testing time. But the new part must be tested, and

all interfaces must be fully exercised.

When to use RAD Model?

o When the system should need to create the project that modularizes in a short span time

(2-3 months).

o When the requirements are well-known.

o When the technical risk is limited.

o When there's a necessity to make a system, which modularized in 2-3 months of period.

o It should be used only if the budget allows the use of automatic code generating tools.

Advantage of RAD Model

o This model is flexible for change.

o In this model, changes are adoptable.

o Each phase in RAD brings highest priority functionality to the customer.

o It reduced development time.

o It increases the reusability of features.

Disadvantage of RAD Model

o It required highly skilled designers.

o All application is not compatible with RAD.

o For smaller projects, we cannot use the RAD model.

o On the high technical risk, it's not suitable.

o Required user involvement.

Big Bang Model

In this model, developers do not follow any specific process. Development begins with the

necessary funds and efforts in the form of inputs. And the result may or may not be as per the

customer's requirement, because in this model, even the customer requirements are not defined.

This model is ideal for small projects like academic projects or practical projects. One or two

developers can work together on this model.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

When to use Big Bang Model?

As we discussed above, this model is required when this project is small like an academic project

or a practical project. This method is also used when the size of the developer team is small and

when requirements are not defined, and the release date is not confirmed or given by the

customer.

Advantage(Pros) of Big Bang Model:

1. There is no planning required.

2. Simple Model.

3. Few resources required.

4. Easy to manage.

5. Flexible for developers.

Disadvantage(Cons) of Big Bang Model:

1. There are high risk and uncertainty.

2. Not acceptable for a large project.

3. If requirements are not clear that can cause very expensive.

Incremental Model

Incremental Model is a process of software development where requirements divided into

multiple standalone modules of the software development cycle. In this model, each module goes

through the requirements, design, implementation and testing phases. Every subsequent release

of the module adds function to the previous release. The process continues until the complete

system achieved.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

The various phases of incremental model are as follows:

1. Requirement analysis: In the first phase of the incremental model, the product analysis

expertise identifies the requirements. And the system functional requirements are understood by

the requirement analysis team. To develop the software under the incremental model, this phase

performs a crucial role.

2. Design & Development: In this phase of the Incremental model of SDLC, the design of the

system functionality and the development method are finished with success. When software

develops new practicality, the incremental model uses style and development phase.

3. Testing: In the incremental model, the testing phase checks the performance of each existing

function as well as additional functionality. In the testing phase, the various methods are used to

test the behavior of each task.

4. Implementation: Implementation phase enables the coding phase of the development system.

It involves the final coding that design in the designing and development phase and tests the

functionality in the testing phase. After completion of this phase, the number of the product

working is enhanced and upgraded up to the final system product

When we use the Incremental Model?

o When the requirements are superior.

o A project has a lengthy development schedule.

o When Software team are not very well skilled or trained.

o When the customer demands a quick release of the product.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

o You can develop prioritized requirements first.

Advantage of Incremental Model

o Errors are easy to be recognized.

o Easier to test and debug

o More flexible.

o Simple to manage risk because it handled during its iteration.

o The Client gets important functionality early.

Disadvantage of Incremental Model

o Need for good planning

o Total Cost is high.

o Well defined module interfaces are needed.

Comparison of different life-cycle models

The classical waterfall model can be considered as the basic model and all other life

cycle models as embellishments of this model. However, the classical waterfall model

cannot be used in practical development projects, since this model supports no

mechanism to handle the errors committed during any of the phases.

This problem is overcome in the iterative waterfall model. The iterative waterfall model

is probably the most widely used software development model evolved so far. This

model is simple to understand and use. However this model is suitable only for well-

understood problems; it is not suitable for very large projects and for projects that are

subject to many risks.

The prototyping model is suitable for projects for which either the user requirements or

the underlying technical aspects are not well understood. This model is especially

popular for development of the user-interface part of the projects.

The evolutionary approach is suitable for large problems which can be decomposed into

a set of modules for incremental development and delivery. This model is also widely

used for object- oriented development projects. Of course, this model can only be used if

the incremental delivery of the system is acceptable to the customer.

The spiral model is called a Meta model since it encompasses all other life cycle models.

Risk handling is inherently built into this model. The spiral model is suitable for

development of technically challenging software products that are prone to several kinds

of risks. However, this model is much more complex than the other models – this is

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

probably a factor deterring its use in ordinary projects.

The different software life cycle models can be compared from the viewpoint of the

customer. Initially, customer confidence in the development team is usually high

irrespective of the development model followed. During the lengthy development

process, customer confidence normally drops off, as no working product is immediately

visible. Developers answer customer queries using technical slang, and delays are

announced. This gives rise to customer resentment. On the other hand, an evolutionary

approach lets the customer experiment with a working product much earlier than the

monolithic approaches. Another important advantage of the incremental model is that it

reduces the customer’s trauma of getting used to an entirely new system. The gradual

introduction of the product via incremental phases provides time to the customer to

adjust to the new product. Also, from the customer’s financial viewpoint, incremental

development does not require a large upfront capital outlay. The customer can order the

incremental versions as and when he can afford them.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Software Requirement Specification - [SRS]

What is Software Requirement Specification - [SRS]?

A software requirements specification (SRS) is a document that captures complete description

about how the system is expected to perform. It is usually signed off at the end of requirements

engineering phase.

Qualities of SRS:

 Correct

 Unambiguous

 Complete

 Consistent

 Ranked for importance and/or stability

 Verifiable

 Modifiable

 Traceable

Types of Requirements:

The below diagram depicts the various types of requirements that are captured during SRS.

How to Write a Software Requirements Specification (SRS Document)

Clear requirements help development teams create the right product. And a software

requirements specification (SRS) helps you lay the groundwork for product development.

We'll define what this is, when you'd use one and five steps to writing an SRS

Document.

At a glance, this is how to write a requirements document:

 Define the purpose of your product.

 Describe what you're building.

 Detail the requirements.

 Get it approved.

What Is a Software Requirements Specification (SRS) Document?

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

A software requirements specification (SRS) is a document that describes what the software

will do and how it will be expected to perform. It also describes the functionality the product

needs to fulfil all stakeholders (business, users) needs.

A typical SRS includes:

 A purpose

 An overall description

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

 Specific requirements

The best SRS documents define how the software will interact when embedded in hardware

— or when connected to other software. Good SRS documents also account for real-life users.

Why Use an SRS Document?

A software requirements specification is the basis for your entire project. It lays the framework

that every team involved in development will follow.

 It’s used to provide critical information to multiple teams — development, quality

assurance, operations, and maintenance. This keeps everyone on the same page.

 Using the SRS helps to ensure requirements are fulfilled. And it can also help you make

decisions about your product’s lifecycle — for instance, when to retire a feature.

 Writing an SRS can also minimize overall development time and costs. Embedded

development teams especially benefit from using an SRS.

Software Requirements Specification vs. System Requirements Specification

A software requirements specification (SRS) includes in-depth descriptions of the software

that will be developed.

A system requirements specification (SyRS) collects information on the requirements for a

system.

“Software” and “system” are sometimes used interchangeably as SRS. But, a software

requirement specification provides greater detail than a system requirements specification.

How to Write an SRS Document

Writing an SRS document is important. But it isn’t always easy to do.

Here are five steps you can follow to write an effective SRS document.

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

1. Create an Outline (Or Use an SRS Template)

Your first step is to create an outline for your software requirements specification. This may be

something you create yourself. Or you may use an existing SRS template.

If you’re creating this yourself, here’s what your outline might look like:

1. Introduction

1.1 Purpose

1.2 Intended Audience

1.3 Intended Use

1.4 Scope

1.5 Definitions and Acronyms

2. Overall Description

2.1 User Needs

2.2 Assumptions and Dependencies

3. System Features and Requirements

 3.1 Functional Requirements

 3.2 External Interface Requirements

 3.3 System Features

 3.4 Non-functional Requirements

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Once you have your basic outline, you’re ready to start filling it out.

2. Start with a Purpose

The introduction to your SRS is very important. It sets the expectation for the product you’re

building.

So, start by defining the purpose of your product.

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

Intended Audience and Intended Use

Define who in your organization will have access to the SRS — and how they should use it.

This may include developers, testers, and project managers. It could also include stakeholders

in other departments, including leadership teams, sales, and marketing.

Product Scope

Describe the software being specified. And include benefits, objectives, and goals. This should

relate to overall business goals, especially if teams outside of development will have access to

the SRS.

Definitions and Acronyms

It’s smart to include a risk definition. Avoiding risk is top-of-mind for many developers

— especially those working on safety-critical development teams.

Here’s an example. If you’re creating a medical device, the risk might be the device fails and

causes a fatality.

By defining that risk up front, it’s easier to determine the specific requirements you’ll need to

mitigate it.

3. Give an Overview of what you’ll build

Your next step is to give a description of what you’re going to build. Is it an update to an

existing product? Is it a new product? Is it an add-on to a product you’ve already created?

These are important to describe upfront, so everyone knows what you’re building.

You should also describe why you’re building it and who it’s for.

User Needs

User needs — or user classes and characteristics — are critical. You’ll need to define who is

going to use the product and how.

You’ll have primary and secondary users who will use the product on a regular basis. You may

also need to define the needs of a separate buyer of the product (who may not be a

primary/secondary user). And, for example, if you’re building a medical device, you’ll need to

describe the patient’s needs.

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

Assumptions and Dependencies

There might be factors that impact your ability to fulfil the requirements outlined in your SRS.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

What are those factors?

Are there any assumptions you’re making with the SRS that could turn out to be false? You

should include those here, as well.

Finally, you should note if your project is dependent on any external factors. This might include

software components you’re reusing from another project.

4. Detail Your Specific Requirements

The next section is key for your development team. This is where you detail the specific

requirements for building your product.

Functional Requirements

Functional requirements are essential to building your product.

If you’re developing a medical device, these requirements may include infusion and battery.

And within these functional requirements, you may have a subset of risks and requirements.

External Interface Requirements

External interface requirements are types of functional requirements. They’re important for

embedded systems. And they outline how your product will interface with other components.

There are several types of interfaces you may have requirements for, including:

 User

 Hardware

 Software

 Communications

System Features

System features are types of functional requirements. These are features that are required in

order for a system to function.

Other Nonfunctional Requirements

Non-functional requirements can be just as important as functional ones.

These include:

 Performance

 Safety

 Security

 Quality

The importance of this type of requirement may vary depending on your industry. Safety

requirements, for example, will be critical in the medical device industry.

IEEE also provides guidance for writing software requirements specifications.

5. Get Approval for the SRS

Once you’ve completed the SRS, you’ll need to get it approved by key stakeholders. And

everyone should be reviewing the latest version of the document.

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Structured Analysis and Structured Design (SA/SD)

What is Structured Analysis?

Structured Analysis and Structured Design (SA/SD) is a top-down decomposition

technique system design methodology. In software engineering, SA/SD are methods used for

analyzing business requirements while developing specifications for converting practices into

computer programs, hardware configurations, and related manual procedures.

Structured Analysis is a set of techniques and graphical tools that allow the analyst to develop a

new system specification that is easily understandable to the user and a functional, high-quality

information system that meets their needs.

Structured Analysis and Structured Design (SA/SD) has a history from way back in the late

1970s modeled by DeMarco, Yourdon, and Constantine after the emergence of the well-known

paradigm of modern structured programming. IBM was the first to incorporate Structured

Analysis and Structured Design (SA/SD) into its development cycle in the late 1970s and early

1980s.

In contrast, people modified the classical Structured Analysis and Structured Design (SA/SD)

due to their inability to represent real-time systems. In 1989, Yourdon came up with another

published version of the methodology with a graphical approach known as “Modern Structured

Analysis”.

The availability of CASE tools in the 1990s enabled many analysts to develop and modify the

graphical Structured Analysis and Structured Design (SA/SD) models. Using this model,

analysts attempted to divide a significant, complex problem into smaller, more easily handled

ones using a “Divide and Conquer”, “Top-Down approach” (Classical SA), or “Middle-Out”

(Modern SA). Analysts used leverage graphics to illustrate their ideas whenever possible to

depict a functional view of the problem and maintain relevant written records.

Structured Analysis is a development method that allows the analyst to understand the system

and its activities in a logical way.

It is a systematic approach, which uses graphical tools that analyze and refine the objectives of

an existing system and develop a new system specification which can be easily understandable

by user.

It has following attributes −

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

 It is graphic which specifies the presentation of application.

 It divides the processes so that it gives a clear picture of system flow.

 It is logical rather than physical i.e., the elements of system do not depend on vendor or

hardware.

 It is an approach that works from high-level overviews to lower-level details.

Structured Analysis Tools

During Structured Analysis, various tools and techniques are used for system development.

They are −

 Data Flow Diagrams

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

 Data Dictionary

 Decision Trees

 Decision Tables

 Structured English

 Pseudocode

Data Flow Diagrams (DFD) or Bubble Chart

It is a technique developed by Larry Constantine to express the requirements of system in a

graphical form.

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

 It shows the flow of data between various functions of system and specifies how the

current system is implemented.

 It is an initial stage of design phase that functionally divides the requirement

specifications down to the lowest level of detail.

 Its graphical nature makes it a good communication tool between user and analyst or

analyst and system designer.

 It gives an overview of what data a system processes, what transformations are

performed, what data are stored, what results are produced and where they flow.

Basic Elements of DFD

DFD is easy to understand and quite effective when the required design is not clear and the

user want a notational language for communication. However, it requires a large number of

iterations for obtaining the most accurate and complete solution.

Symbol

Name

Symbol Meaning

Square Source or Destination of Data

Arrow Data flow

Circle Process transforming data flow

Open

Rectangle

Data Store

The following table shows the symbols used in designing a DFD and their significance

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Types of DFD

Department of Information Technology, SKIT, Jaipur – 302017, Rajasthan (INDIA)

URL: www.skit.ac.in

DFDs are of two types: Physical DFD and Logical DFD. The following table lists the points

that differentiate a physical DFD from a logical DFD.

Physical DFD Logical DFD

It is implementation dependent. It shows which

functions are performed.

It is implementation independent. It

focuses only on the flow of data

between processes.

It provides low level details of hardware,

software, files, and people.

It explains events of systems and data

required by each event.

It depicts how the current system operates and

how a system will be implemented.

It shows how business operates; not

how the system can be implemented.

Context Diagram

A context diagram helps in understanding the entire system by one DFD which gives the

overview of a system. It starts with mentioning major processes with little details and then

goes onto giving more details of the processes with the top-down approach.

The context diagram of mess management is shown below.

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

List of Software Engineering (3IT4-07)

Text Books and Reference Books

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Text Books

 Jessica Keyes. Software Engineering Handbook. Auerbach Publications (CRC

Press), 2003.

Contains complete examples of various SE documents.

 Roger S. Pressman. Software Engineering: A Practioner's Approach (Sixth

Edition, International Edition). McGraw-Hill, 2005.

 Ian Sommerville. Software Engineering (Seventh Edition). Addison-Wesley,

2004.

 Hans van Vliet. Software Engineering: Principles and Practice (Second

Edition). Wiley, 1999.

Reference Books

 Timothy C. Lethbridge & Robert Laganière.
Object-Oriented Software Engineering: Practical Software Development using
UML and Java (Second Edition).
McGraw-Hill, 2005.

 M.R.V. Chaudron, J.F. Groote, K.M. van Hee, C. Hemerik, L.J.A.M. Somers and
T. Verhoeff. "Software Engineering Reference Framework". Technical Report
CS-Report 04-039, Computer Science Reports, Department of Mathematics and
Computer Science, Eindhoven University of Technology, Eindhoven, The
Netherlands, 2004.

 Ian K. Bray. An Introduction to Requirements Engineering. Pearson Addison

Wesley; 1st edition (August 26, 2002).

 Alan M. Davis. Software Requirements: Objects, Functions, and States.

Prentice Hall PTR; 2nd Revised edition (March 1993).

Prerequisites of Software Engineering Course

Before start the software engineering course student should have knowledge about

following topics:-

1. System Model

mailto:info@skit.ac.in
http://www.skit.ac.in/
http://www.amazon.com/exec/obidos/ISBN=0849314798/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0071238409/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0071238409/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0321210263/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0471975087/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0471975087/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0077109082/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=0077109082/theinternationscA/
https://www.win.tue.nl/~wstomv/edu/2ip30/references/tue-se-reference-framework.pdf
http://www.amazon.com/exec/obidos/ISBN=0201767929/theinternationscA/
http://www.amazon.com/exec/obidos/ISBN=013805763X/theinternationscA/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

Teaching-Learning Methodology

Process followed to improve quality of Teaching Learning.

 Adherence to Academic Calendar

 Use of various instructional methods and pedagogical initiatives

1. Lecture: Primarily a method of delivering course content in the class (online/offline) and

preferably used for every course.

2. Multimedia: (Computer, Internet, CD, DVD): Use of Presentations, NPTEL Videos, Spoken

mailto:info@skit.ac.in
http://www.skit.ac.in/

Page |

Swami Keshvanand Institute of Technology, Management & Gramothan,

Ramnagaria, Jagatpura, Jaipur-302017, INDIA
Approved by AICTE, Ministry of HRD, Government of India

Recognized by UGC under Section 2(f) of the UGC Act, 1956

Tel. : +91-0141- 5160400 Fax: +91-0141-2759555

E-mail: info@skit.ac.in Web: www.skit.ac.in

mailto:info@skit.ac.in
http://www.skit.ac.in/

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 1/20

1 point

Non-behavioral

Structural

Non structural

Behavioral

SE Quiz

sanju@skit.ac.in (not shared) Switch account

* Required

Name of Student *

Your answer

Roll No. *

Your answer

Class & Section *

Your answer

Following diagrams as a type of Class diagram, component diagram,

object diagram, and deployment diagram? *

https://accounts.google.com/AccountChooser?continue=https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform&service=wise

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 2/20

1 point

Program only in Java

API for all classes

Executable logic to reuse across classes

Specify required services for types of objects

1 point

Activity

Collaboration

State chart

Use case

1 point

6

9

8

12

UML diagrams are used to: *

Which of the following UML diagrams has a static view? *

How many diagrams are there in UML. *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 3/20

1 point

Object Diagram

Interface diagram

Use case model

Class diagram

1 point

non-structural

structural

behavioral

non-behavioral

1 point

Collaboration

Object lifeline

State chart

Activity

Which of the following is not a UML diagram? *

Activity diagram, use case diagram, collaboration diagram, and

sequence diagrams are? *

Which diagram is used to show interactions between messages are

classified as? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 4/20

1 point

Flow of data

All of the above

Entity

Processes

1 point

line

Abstract

Messages

time

1 point

Documents

Patterns

Methods

Structures

DFD describe? *

The horizontal line of a sequence diagram shows *

The recurring aspects of designs are called design. *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 5/20

1 point

Preliminary Investigation and Analysis

System Design

Coding

System Testing

1 point

System Analysis

Feasibility Study

Details of DFD

System Planning

1 point

Structure Analysis

List

Plan

Algorithm

Other:

What is the first step in the software development lifecycle? *

What does the study of an existing system refer to? *

Details of DFD Feasibility Study System Analysis System Planning *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 6/20

1 point

Determine Component based quality attribute

Determine Functional Component

Modify an existing architecture

All of the mentioned

1 point

Set of programs

Set of programs, documentation & configuration of data

Documentation and configuration of data

None of the mentioned

1 point

All of the mentioned

Configuring Process Start up

Providing User interface

Allowing user to monitor and repair the system

Which of these are the various techniques to generate design

alternatives? *

Software is defined as ___________ *

Functional components for a working models can be stated as which of

the following? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 7/20

1 point

All of the above

Simplicity

Accessibility

Modularity

1 point

Requirements

Development team & users

Project type & associated risk

All of the above

1 point

Prototyping & Waterfall

Prototyping & RAD

RAD & Spiral

Prototyping & Spiral

What are the features of Software Code? *

SDLC Model selection is based on __________. *

When the user participation isn't involved, which of the following models

will not result in the desired output? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 8/20

1 point

RAD

Both (b) and (c)

Spiral

Iterative Enhancement

1 point

Embedded, CAM

Customized, Generic

CAD, Embedded

Firmware, CAD

1 point

Reusability

Scalability

Reliability

Usability

Which of the following model will be preferred by a company that is

planning to deploy an advanced version of the existing software in the

market? *

Which of the following falls under the category of software products? *

Which of the following refers to internal software equality? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 9/20

1 point

Rational Software Architect, IBM

Rational Software Architect, Infosys

Rational Software Architecture , IBM

Rational software analysis, Infosys

1 point

Adaptability

Reliability

All of the mentioned

Re usability

1 point

Software Evolution

Software designing

Software Testing & Validation

Software Verification

RSA is abbreviated as __________, invented by a division of __________. *

The Nonfunctional components are ____________ *

Which one of the following activities is not recommended for software

processes in software engineering? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 10/20

1 point

6, 5, 1, 3, 4, 2

1, 6, 5, 2, 3, 4

1, 2, 4, 3, 6, 5

6, 1, 4, 2, 3, 5

1 point

Data Model

Object Model

Context Model

Behavioral Model

1 point

Complexity

Efficiency

Accuracy

Quality

Arrange the following activities to form a general software engineering

process model. I. Manufacture II. Maintain III. Test IV. Install V. Design VI.

Specification *

The __________ model helps in representing the system's dynamic

behavior. *

Which of the following word correctly summarized the importance of

software design? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 11/20

1 point

Data Structure

Physical File

All of the above

Logical File

1 point

Cost

Effort

All of the above

Efficiency

1 point

Hardware and Software Costs

All of the above

Training Costs

Effort Costs

What does a data store symbol in the Data Flow Diagram signify? *

__________ is not a direct measure of SE process. *

Which parameters are essentially used while computing the software

development cost? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 12/20

1 point

Business risks

Technical risks

Potential risks

Known risks

1 point

UML packages

Package members

Dependency

Box

1 point

Packages and dependency

Internal structure, Components & their Relationship to the environment

Components, their Relationship to the environment

Internal structure

Which of the following threatens the quality and timeliness of the

produced software? *

What is a collection of model elements called? *

What does a component diagram consists of? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 13/20

1 point

relationships

nodes

objects

classifiers

1 point

prism

cuboids

rectangular

cube

1 point

Generalization

Aggregation

Dependency

Association

Component diagrams commonly contain components, interfaces and

________ *

In deployment diagram, a node is represented as a ________ *

________ relationship is used among nodes in deployment diagram. *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 14/20

1 point

system

execution

deployment

work product

1 point

ordination

aggregation

segregation

increment

1 point

association is the number of instances with a single instance

association is the number of instances with a number instance

All of the mentioned

None of the mentioned

Source code files and data files are contained by the ________

components *

.__________ represented by In UML diagrams, relationship between

component parts and object. *

Multiplicity for an association ___________. *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 15/20

1 point

Component diagram

Deployment diagram

Class diagram

Use case diagram

1 point

Based on the iterations that occurred within the activities.

Based on the output, which is derived after negotiating in the software development
process.

Based on the interleaved specification, design, testing, and implementation activities.

All of the above

1 point

Incremental Development

Both Incremental and Iterative Development

Iterative Development

Linear Development

________ shows how a system will be physically deployed in the hardware

environment *

On what basis is plan-driven development different from that of the

software development process? *

The agile software development model is built based on __________. *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 16/20

1 point

System failure

Human error or mistake

System error

System fault

1 point

Data Flow

Data Process

Data Stores

None of the above

1 point

To evaluate the ongoing project's status and track possible risks.

To evaluate the ongoing project's status.

To track potential risks.

None of the above

An erroneous system state that results in an unexpected system behavior

is acknowledged as? *

What does a directed arc or line signify in DFD? *

What is the main task of project indicators? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 17/20

1 point

Sequence Diagram

Collaboration Diagram

Class Diagram

Object Diagram

1 point

For strategic purposes

To minimize the development schedule.

To evaluate the ongoing project's quality on a daily basis

To minimize the development schedule and evaluate the ongoing project's quality on a
daily basis

1 point

Change management

System management

Internship management

Version management

Which diagram in UML shows a complete or partial view of the structure

of a modeled system at a specific time? *

What is the main intent of project metrics in project libre tool? *

Which of the following is an incorrect activity for the configuration

management of a software system? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 18/20

1 point

Planning process

Decomposition

Association

All of the mentioned

1 point

Costs of lunch time food

Costs of support staff

Costs of networking and communications

Costs of air conditioning and lighting in the office space

1 point

COCOMO

FP-based estimation

Both COCOMO and FP-based estimation

Process-based estimation

The project planner examines the statement of scope and extracts all-

important software functions, which is known as *

Which of the following is not included in the total effort cost? *

Which of the following is used to predict the effort as a function of LOC

or FP? *

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 19/20

1 point

Application composition model

Post-architecture-stage model

Early design stage model

All of the above

1 point

Performance risk

Risk identification

Risk projection

Support risk

1 point

Sequence Diagram + Collaboration Diagram

Activity Diagram + State Chart Diagram

Deployment Diagram + Collaboration Diagram

None of the mentioned

Never submit passwords through Google Forms.

This form was created inside of Swami Keshvanand Institute of Technology. Report Abuse

Once the requirements are stabilized, the basic architecture of the

software can be established. Which of the following version of the

COCOMO model conforms to the given statement? *

Which of the following refers to the systematic attempt, which is

implemented to ascertain the threats to any project plan? *

Interaction Diagram is a combined term for *

Submit Clear form

https://docs.google.com/forms/u/0/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/reportabuse?source=https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform

4/9/22, 9:39 AM SE Quiz

https://docs.google.com/forms/d/e/1FAIpQLSdi-lMUr-YRAaOGCRZDiuuKgDnJm1IuECiShyikZVVtf3qECw/viewform 20/20

 Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

Assignment-2

Part-A(ANSWER UPTO 25 WORDS)

1. Define Verification and validation.

2. Write the Objective Of Software Project Planning.

3. Two Differences Between LOC and FP estimation.

4. List the Requirement Analysis Task.

5. Why accuracy is important in data dictionary.

6. How are coupling and software portability related to each other.

7. What is the difference between Design walkthrough and Design Inspection.

8. Can we have Inheritance without polymorphism.

9. List Object Oriented Design approaches.

10. Define UML.

Part-B

1. Explain typically three types of risk that software can suffer from.

2. Explain Components Of SRS.

3. Write the IEEE recommended structure.

4. Explain Effective Modular Design.

5. Describe Object Modularization.

Part-C

1. Expain RAD Model in detail.

2. Explain: Stepwise Refinement, Modularity, and Information Hiding.

3. Descibe Object Oriented Analysis Modeling.

4. Draw a Data Flow Diagram for Traffic Control System,0-level,1-level and 2-level.

	Operational
	Transitional
	Maintenance
	LIFE CYCLE MODEL
	Different software life cycle models

	1. CLASSICAL WATERFALLMODEL
	Shortcomings of the classical waterfall model

	2. ITERATIVE WATERFALL MODEL
	3. PRTOTYPING MODEL
	A prototype is a toy implementation of the system. A prototype usually exhibits limited functional capabilities, low reliability, and inefficient performance compared to the actual software. A prototype is usually built using several shortcuts. The sh...
	Need for a prototype in software development

	4. SPIRALMODEL
	First quadrant (Objective Setting)
	Second Quadrant (Risk Assessment and Reduction)
	Third Quadrant (Development and Validation)
	Fourth Quadrant (Review and Planning)
	Circumstances to use spiral model
	Comparison of different life-cycle models

