Roll No.
Total No. of Questions: 09
BBA (Batch-2012) (Sem.-2nd)

BUSINESS MATHEMATICS

Subject Code : BBA-203
Paper ID : [C0242]
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTIONS-B consists of FOUR Subsections : Units-I, II, III \& IV. Each Subsection contains TWO questions each carrying TEN marks each and student has to attempt any ONE question from each Subsection.

SECTION-A

rem for positive integral index.
(b) If $x\left[\begin{array}{l}2 \\ 3\end{array}\right]+y\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\left[\begin{array}{r}10 \\ 5\end{array}\right]$, find the values of x and y.
(c) Define comparable sets by giving examples.
(d) Find the derivative of $\frac{x}{3}+\frac{3}{x},(x \neq 0)$ w.r.t. x.
(e) Define upper triangular and lower triangular matrices. Also give example in each case.
(f) Find $\frac{d y}{d x}$ if $x^{3}+y^{3}=3 a x y$.
(g) Prove that $\log _{b}^{a} \times \log _{a}^{b}=1$.
(h) List the sets A, B and C given that

$$
\begin{aligned}
& \mathrm{A} \cup \mathrm{~B}=\{p, q, r, s\} ; \mathrm{A} \cup \mathrm{C}=\{q, r, s, t\} \\
& \mathrm{A} \cap \mathrm{~B}=\{q, r\} \text { and } \mathrm{A} \cap \mathrm{C}=\{q, \mathrm{~s}\}
\end{aligned}
$$

(i) If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$, then show that $|2 \mathrm{~A}|=4|\mathrm{~A}|$
(j) Expand $(2+3 x)^{-4}$ upto four terms.

SECTION-B

UNIT - I

2. (a) Show that $\log 2+16 \log \frac{16}{15}+12 \log \frac{25}{24}+7 \log \frac{81}{80}=1$.
(b) Solve the equation $11^{4 x-5} \times 3^{2 x}=5^{3-x} \div 7^{-x}$. Using logarithms.
3. Prove that $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$. Also verify this relation for the sets.
$A=\{1,2,3,5\}, B=\{2,3,4,6\}$ and $C=\{1,2,4,5,7\}$.

UNIT - II

4. Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
8 & 4 & 2 \\
2 & 9 & 4 \\
1 & 2 & 8
\end{array}\right]
$$

or
5. Solve the following system of equations using Cramer's rule.

$$
5 x-7 y+\mathrm{z}=11,6 x-8 y-z=15,3 x+2 y-6 z=7 .
$$

