Reg. No. : \qquad
Name : \qquad

VII Semester B.Tech. Degree (Reg./Supple./Improv. - Including Part Time) Examination, November 2012 (2007 Admn. Onwards) PT2K6/2K6 EC 703 : INFORMATION THEORY AND CODING

Time: 3 Hours
Max. Marks : 100

Instruction : Answer all questions.

1. a) Define mutual information. List its properties.
b) State and prove Kraft's Mc Millan inequality.
c) Define primitive polynomials and irreducible polynomials. Give examples.
d) Make Mod-7 addition and multiplication table.
e) Define hamming weight and hamming distance of $(7,4)$ linear block code. Define its minimum distance.
f) Give the condition to be satisfied by a polynomial to be the generator polynomial of a cyclic code. Hence find the generator polynornial for a $(7,4)$ cyclic code.
g) Explain how a maximum likelihood decoder becomes a minimum distance decoder in a BSC using convolution codes.
h) What are Turbo codes ? With block diagram, explain the working of a Turbo encoder.
2. a) Consider two sources S_{1} and S_{2} emits messages $x_{1}, x_{2} ; x_{3}$ and y_{1}, y_{2}, y_{3} with joint probabilities $p(x, y)$ as given in matrix below. Calculate $H(x), H(y)$ $H(x / y), H(y / x)$ and $I(x, y)$.

$\mathrm{P}(\mathrm{x}, \mathrm{y})$	y_{1}	y_{2}	y_{3}
x_{1}	$3 / 40$	$1 / 40$	$1 / 40$
x_{2}	$1 / 20$	$3 / 20$	$1 / 20$
x_{3}	$1 / 8$	$1 / 8$	$3 / 8$

OR
b) i) State and prove maximal property and additive property of entropy.
ii) Encode the following source symbols using Shannon Faro code and Huffmann code.
$X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$
$p(x)=\{0.2,0.1,0.05,0.05,0.6\}$
Find efficiency of this code in both methods. Compare performance of the coding methods.
3. a) i) Construct a table of $\operatorname{GF}\left(2^{3}\right)$ based on the primitive polynomial $p(x)=1+x+x^{3 .}$ Determine the order of each element.
ii) What is minimal polynomial. Find minimal polynomials of the elements of $\mathrm{GF}\left(2^{3}\right)$.
b) i) Show that $x^{5}+x^{3}+1$ is irreducible over $G F(2)$.
ii) Let V be a vector space over a field F. Prove that for any scalar ' a ' in F, and any vector v is V,

$$
(-\mathrm{a}) \cdot \mathrm{v}=\mathrm{a} \cdot(-\mathrm{v})=-(\mathrm{a} \cdot \mathrm{v}) .
$$

4. a) Consider $(6,3)$ linear block code generated by
$G=\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$, then give its
i) Parity check matrix H
ii) Encoder diagram
iii) Standard array
iv) Decoder block diagram. 15

OR
b) Describe the characteristics and encoding principle of RS codes.
5. a) Construct rate $1 / 3, \mathrm{~K}=3$, convolution encoder.

Given
$g_{1}=[100], g_{2}=[101], g_{3}=[111]$
Sketch tree diagram and trellis diagram of this encoder.

$$
\mathrm{OR}
$$

b) Write notes on the following :
i) Golay codes
ii) Trellis coded modulation
iii) Puncturing of a code.

