
Q.1. Isothermal mixing of pure gases always results in a decrease in the Hence work has to be donethe system for separating a mixture of gases into its components.
Q.2. A system of unite mass at equilibrium consists of two phases, a and b of extent x and (1-x) respectively. Write down expressions for the pressure and the specific enthalpy of the system as a whole in terms of the properties $\mathrm{P}^{\alpha}, \mathrm{P}^{\beta}, \mathrm{h}^{\alpha}, \mathrm{h}^{\beta}$. GATE-1990
Q.3. The maximum work obtainable from a closed system under isothermal operation is given by
For one mole of an ideal gas expanding isothermally to twice its volume, this is equal to

GATE - 1990

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.4. The minimum work required for steady isothermal compression of a real gas is given by
For one mole of an ideal gas that is compressed isothermally from one to two atmosphere, this is equal to

GATE - 1990

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription

```
Q.5. Solid calcium oxalate dissociates at high temperature into solid calcium
carbonate and carbon monoxide,
    \(\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~S})=\mathrm{CaCO}_{3}(\mathrm{~S})+\mathrm{CO}(\mathrm{g})\)
The equilibrium pressure of CO between 670 and 700 K is given by
    \(P(\mathrm{~atm})=14.4-9600 / T\)
where T is in K . Assuming ideal behavior, calculate \(\Delta \mathrm{G}^{\circ}, \Delta \mathrm{H}^{\circ}\) and \(\Delta \mathrm{S}^{\circ}\) at 675 K .
Q.6. For a gas obeying the van-der-Waal's equation, at the critical temperature, (A) Both \((\boldsymbol{\delta} \mathrm{p} / \boldsymbol{\delta} \mathrm{v})_{\mathrm{T}}\) and \(\left(\boldsymbol{\delta}^{2} \mathrm{p} / \boldsymbol{\delta} \mathrm{v}^{2}\right)_{\mathrm{T}}\) are zero.
(B) The first derivative is zero, while the second derivative is non-zero.
(C) The second derivative is zero, while the first derivative is non-zero.
(D) Both the derivatives are non-zero.

GATE - 1991

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.7. For an ideal gas the slope of the pressure-volume curve, at a given point will be, (A) Steeper for an isothermal than for an adiabatic process.
(B) Steeper for an adiabatic than for an isothermal process.
(C) Identical for both the processes.
(D) of opposite signs.

GATE - 1991

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.8. For a system in equilibrium, at a given temperature and pressure:
(A) The entropy must be a minimum
(B) The enthalpy must be a minimum
(C) The internal energy must be a minimum
(D) The Gibbs-free energy must be a minimum
Q.9. To obtain the integrated form of Clausius-Clapeyron equation,
\[
\ln \frac{p_{2}}{p_{1}}=\frac{\Delta H_{v}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]
\]
from the exact Clapeyron equation, it is assumed that:
(A) The volume of the liquid phase is negligible compared to that of the vapor size.
(B) The vapor phase behaves as ideal gas.
(C) The heat of vaporization is independent of temperature.
(D) All the above are applicable.
Q.10. The shape of T-s diagram for Carnot cycle is,
(A) A rectangle
(B) A rhombus
(C) A trapezoid
(D) A circle

GATE - 1991

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.11. Calculate the fraction of pure ethane that would dehydrogenate at 750 K and 5 atmosphere, if the following reaction goes to equilibrium.
\[
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
\]
\(\Delta \mathrm{G}^{\circ}\) for the reaction at \(750 \mathrm{~K}=42.576 \mathrm{~kJ}\). Assume ideal gas behavior. GATE - 1991
Q.12. At 318 K at total pressure of 24.4 kPa , the composition of system ethanol (1) and toluene (2) at equilibrium \(\mathrm{x}_{1}=0.3\) and \(\mathrm{y}_{1}=0.634\). The saturation pressure at the given temperature for pure components is, \(\mathrm{P}_{1}=23.08 \mathrm{kPa}\) and \(\mathrm{P}_{2}=10.05 \mathrm{kPa}\), respectively. Calculate:
(a) The liquid phase activity coefficients.
(b) The value of \(\mathrm{G}^{\mathrm{E} / \mathrm{RT}}\) for the liquid phase.

GATE - 1991
Q.13. Write expressions for,
(A) van't Hoff equation
(B) van-der-Waals equation of state

GATE - 1992

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.14. During Joule-Thompson expansion of gases,
(A) Enthalpy remains constant
(B) Entropy remains constant
(C) Temperature remains constant
(D) None of the above

GATE - 1992

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.15. The necessary and sufficient condition for equilibrium between two phases is, (A) Condition of each component should be same in the two phases
(B) The temperature of each phase should be same
(C) The pressure should be same in the two phases
(D) The chemical potential of each component should be same in the two phases
Q.16. For a single component, two-phase mixture the number of independent variable properties are,
(A) Two
(B) One
(C) Zero
(D) Three

GATE - 1992

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.17. \(10^{6}\) Joules of heat are transferred from a reservoir at \(327^{\circ} \mathrm{C}\) to an engine that operates on the Carnot cycle. The engine rejects heat to a reservoir at \(27^{\circ} \mathrm{C}\). Determine the thermal efficiency of the cycle and work done by the engine.

GATE - 1992
Q.18. An inventor claims to have developed a refrigeration unit which maintains the refrigerated space at \(-3^{\circ} \mathrm{C}\) while operating in a room where the temperature is \(27^{\circ} \mathrm{C}\), and which has a coefficient of performance of 9.5 . How do you evaluate his claim? GATE-1992
Q.19. Consider the compression of air from \(10^{5} \mathrm{~Pa}\) at \(27^{\circ} \mathrm{C}\) to \(3 \times 10^{6} \mathrm{~Pa}\) in an ideal two stage compressor with intercooling. Assume that the temperature of the air leaving the intercooler is also \(27^{\circ} \mathrm{C}\), and that the optimum interstate pressure is used. The compressor is water-jacketed and the polytropic exponent n is 1.30 for both stages. Determine the work of compression per kg of air. \(\quad\) GATE - 1992

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.20. Ideal gas law is applicable at, (A) low T, low P
(B) high T, high P
(C) low T, high P
(D) high T, low P
Q.21. The second law of thermodynamics states that, (A) The energy change of a system undergoing any reversible process is zero (B) It is not possible to transfer heat from a lower temperature to a higher temperature
(C) The total energy of the system and surroundings remain constant (D) None of the above
Q.22. Fill the blanks.
(i) The heat of formation of a compound is defined as the heat of reaction leading to the formation of the compound from it's
(ii) The phase rule is given as

GATE - 1994

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.23. True/False
(i) Pressure is an extensive property
(ii) Work done by a gas during free expansion is zero
(iii) A process is irreversible as long as \(\Delta\) s for the system is greater than zero. (iv) The mechanical work done by a system is always equal to \(\int\) Pdv. \(\quad\) GATE - 1994

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
\[
\begin{aligned}
\text { Q.24. (I) } \mathrm{dH} & \text { (A) } \mathrm{Tds}-\mathrm{P} d v \\
\text { (II) } \mathrm{dG} & \text { (B) } \mathrm{Tds}+\mathrm{vdP} \\
& \text { (C) }-\mathrm{PdV}-\mathrm{sdT} \\
& \text { (D) } \mathrm{vdP}-\mathrm{sdT}
\end{aligned}
\]
\(\square\)
\[
\begin{array}{ll}
\text { Q.25. (I) For any cyclic process } & \text { (A) } \Delta U=0 \\
\text { (II) For any adiabatic process } & \text { (B) } Q=0 \\
& \text { (C) } W=0 \\
\text { (D) } \Delta U, Q \text { and } W \text { are all=0 } & \text { GATE } \mathbf{1 9 9 4}
\end{array}
\]
Q.26. An experimental determination of a vapor liquid equilibrium state of ether (1) and acetone (2) binary system gave the following result:
\(\mathrm{x}_{1}=0.3, \mathrm{~T}=40^{\circ} \mathrm{C}\),
\(\mathrm{y}_{2}=0.42, \mathrm{P}=10^{5} \mathrm{~Pa}\).
The saturation vapor pressures of the pure components at \(40^{\circ} \mathrm{C}\) are,
Ether (1) \(=1.21 \times 10^{5} \mathrm{~Pa}\)
Acetone (2) \(=0.56 \times 10^{5} \mathrm{~Pa}\)
The vapor phase can be assumed to be ideal.
(a) Calculate the liquid phase activities coefficients
(b) What is the value of excess Gibbs free energy \(\mathrm{G}^{\mathrm{E}} / \mathrm{RT}\) for the liquid phase? GATE-1994
Q.27. A solid is transformed into vapour without going through the liquid phase at (A) triple point
(B) boiling point
(C) below triple point
(D) always

GATE - 1995

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.28. At the inversion point, the Joule-Thompson coefficient is
(A) positive
(B) negative
(C) zero
(D) none of the above
\begin{tabular}{|lr|}
\hline Q.29. The kinetic energy of gas molecules is zero at \\
(A) \(0^{\circ} \mathrm{C}\) & \\
(B) \(273{ }^{\circ} \mathrm{C}\) & \\
(C) \(100^{\circ} \mathrm{C}\) & \\
(D) \(-273^{\circ} \mathrm{C}\) & GATE - 1995 \\
\hline
\end{tabular}

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.30. A closed system is cooled reversely from \(100^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\). If no work is done on the system.
(A) Its internal energy ( U ) decreases and its entropy ( S ) increases
(B) U and S both decrease
(C) U decreases but S is constant
(D) U is constant but S decreases

GATE - 1995
Q.31. Calculate the change in entropy when one gram of ice at \(0^{\circ} \mathrm{C}\) is converted into steam at \(100^{\circ} \mathrm{C}\). Latent heat of fusion of ice \(=80 \mathrm{cal} / \mathrm{s}\). Latent heat of vaporization \(=\) \(540 \mathrm{cal} / \mathrm{g}\) mean specific heat of water between \(0^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}=1\). GATE - 1995
Q.32. The number of degrees of freedom for a mixture of ice and water (liquid) are :
(A) 2
(B) 3
(C) 1
(D) 0
GATE - \(\mathbf{1 9 9 6}\)

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.33. The equation \(\mathrm{dU}=\mathrm{TdS}-\mathrm{PdV}\) is applicable to infinitesimal changes occurring in :
(A) an open system of constant composition
(B) a closed system of constant composition
(C) an open system with changes in composition
(D) a closed system with changes in composition

GATE - 1996

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.34. The theoretical minimum work required to separate one mole of a liquid mixture at 1 atm , containing 50 mole \(\%\) each of \(n\)-heptane and noctane into pure compounds each at 1 atm is :
(A) \(-2 \mathrm{RT} \ln 0.5\)
(B) \(-\mathrm{RT} \ln 0.5\)
(C) 0.5 RT
(D) 2 RT

GATE - 1996

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.35. Given
\[
\begin{gathered}
3 \mathrm{H}_{2}+\mathrm{CO}=\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{~K}_{\mathrm{p}}=10^{1.84} \text { and } \\
4 \mathrm{H}_{2}+\mathrm{CO}_{2}=\mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{~K}_{\mathrm{p}}=10^{1.17}
\end{gathered}
\]
the \(\mathrm{K}_{\mathrm{p}}\) for the reaction \(\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{CO}_{2}+\mathrm{H}_{2}\) is
(A) \(10^{3.01}\)
(B) \(10^{-0.67}\)
(C) \(10^{-3.01}\)
(D) \(10^{0.67}\)

GATE - 1996
Q.36. The activity coefficients of benzene (A)-cyclohexane (B) mixtures at \(40^{\circ} \mathrm{C}\), are given by RT \(\operatorname{lng}_{\mathrm{A}}=\mathrm{bx}_{\mathrm{B}}{ }^{2}\) and RT \(\operatorname{lng}_{\mathrm{B}}=\mathrm{bx}_{\mathrm{A}}{ }^{2}\). At \(40^{\circ} \mathrm{C}\). A and B form an azeotrope containing \(49.4 \mathrm{~mol} \% \mathrm{~A}\) at a total pressure of 202.5 mm Hg . If the vapour pressures of pure A and pure B are 182.6 and 183.5 mm Hg respectively, calculate the total pressure of the vapour at temperature \(40^{\circ} \mathrm{C}\) in equilibrium with a liquid mixture containing 12.6 mol \% A.

GATE - 1996
Q.37. Calculate the change in internal energy of 25 k mol of CO 2 gas when it is isothermally expanded from 10132 kPa to 101.32 kPa at 373 K , the corresponding molar volumes being \(0.215 \mathrm{~m}^{3} / \mathrm{kmol}\) and \(30.53 \mathrm{~m} 3 / \mathrm{k} . \mathrm{mol}\). Assume \(\mathrm{CO}_{2}\) to obey
\[
\left[P+\frac{365}{v^{2}}\right](v-0.043)=R T
\]

GATE - 1996

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.38. Identify the extensive and intensive properties from the given list
a. chemical potential
b. entropy
c. fugacity
d. enthalpy
e. activity coefficient
Q.39. A system undergoes a change from a given initial state to a given final state either by an irreversible process \(\left(\Delta \mathrm{S}_{\mathrm{I}}\right)\) or by a reversible process \(\left(\Delta \mathrm{S}_{\mathrm{R}}\right)\). Then
(A) \(\Delta \mathrm{S}_{\mathrm{I}}\) is always \(>\Delta \mathrm{S}_{\mathrm{R}}\)
(B) \(\Delta \mathrm{SI}\) is sometimes \(>\Delta \mathrm{S}_{\mathrm{R}}\)
(C) \(\Delta \mathrm{SI}\) is always \(<\Delta \mathrm{S}_{\mathrm{R}}\)
(D) \(\Delta \mathrm{S}_{\mathrm{I}}\) is always \(=\Delta \mathrm{S}_{\mathrm{R}}\)

Where \(\Delta \mathrm{S}_{\mathrm{I}}\) and \(\Delta \mathrm{S}_{\mathrm{R}}\) are the entropy changes of the system for the irreversible and reversible processes, respectively.
Q.40. The change in Gibbs free energy for vaporization of a pure substance is (A) Positive
(B) negative
(C) Zero
(D) may be positive or negative

GATE - 1997

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.41. The equilibrium constant, \(K\), for a chemical reaction depends on
(A) temperature only
(B) pressure only
(C) temperature and pressure
(D) ratio of reactants
Q.42. One mole feed of a binary mixture of a given composition is flash vapourised at a fixed P and T. If Raoult's law is obeyed, then changing the feed composition would effect.
(A) the product composition but not the fraction vapourized
(B) the product composition as well as the fraction vapourized
(C) the fraction vapourized but not the product composition
(D) neither the product composition nor the fraction vapourized
Q.43. The molar excess Gibbs free energy, \(\mathrm{g}^{\mathrm{E}}\), for a binary liquid mixture at T and P is given by \(\left(g^{\mathrm{E}} / \mathrm{RT}=\mathrm{Ax}_{1} \mathrm{x}_{2}\right.\), where A is a constant. The corresponding equation for \(\ln \gamma_{1}\), where \(\gamma_{1}\) is the activity coefficient of component 1 , is
(A) \(\mathrm{Ax}_{2}{ }^{2}\)
(B) \(A x_{1}\)
(C) \(A x_{2}\)
(D) \(A x_{1}{ }^{2}\)

GATE - 1997

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.44. An equimolar mixture of benzene and toluene is contained in a piston/cylinder arrangement at a temperature T.
What is the maximum pressure below which this mixture will exist as a vapour phase alone?
At the given T, the vapour pressures of benzene and toluene are 1530 and 640 mm Hg , respectively. Assume that Raoult's law is valid.
Q.45. Determine the mol fraction of methane, \(\mathrm{x}_{1}\), dissolved in a light oil at 200 K and 20 bar. Henry's law is valid for the liquid phase, and the gas phase may be assumed to be an ideal solution.
At these conditions, Henry's law constant for methane in oil = 200 bar Fugacity coefficient of pure methane gas \(=0.90 \mathrm{Mol}\). fraction of methane in the gas phase, \(\mathrm{y}_{1}=0.95\)
Q.46. Ethanol is manufactured by the vapour phase hydration of ethylene according to the reaction :
\[
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
\]

The reactor operates at 400 K and 2 bar and the feed is a gas mixture of ethylene and steam in the mol ratio \(1: 3\). The equilibrium constant is 0.25 .
Estimate the composition ( \(\mathrm{mol} \%\) ) of the equilibrium mixture. Assume ideal gas behaviour and take \(\mathrm{f}_{1}{ }^{0}=1\) bar, where \(\mathrm{f}_{1}{ }^{0}\) is the standard state fugacity of component 1. \(\quad\) GATE - 1997
Q.47. A liquid mixture contains \(30 \%\) o-xylene, \(60 \%\) p-xylene and \(10 \%\) m-xylene (all percentages in \(\mathrm{w} / \mathrm{w}\) ). Which of the following statements would be true in respect of this mixture ?
(A) The mixture exhibits an azeotrope at 101.3 kPa
(B) The composition of the mixture, in percent by volume is: o-xylene 30, p-xylene 60 and m-xylene 10
(C) The composition of the mixture in mol percent is: o-xylene 30, p-xylene 60 and mxylene 10
(D) The mixture contains optical isomers
Q.48. A change in state involving a decrease in entropy can be spontaneous only if (A) it is exothermic
(B) it is isenthalpic
(C) it takes place isothermally
(D) it takes place at constant volume

GATE - 1998
Q.49. A Carnot cycle consists of the following steps :
(A) two isothermals and two isentropics
(B) two isobarics and two isothermals
(C) two isochorics and two isobarics
(D) two isothermals \& two isochorics

GATE - 1998

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.50. It is desired to bring about a certain change in the state of a system by performing work on the system under adiabatic conditions
(A) The amount of work needed is path-dependent
(B) Work alone cannot bring about such a change of state
(C) The amount of work needed is independent of path
(D) More information is needed to conclude anything about the path dependence or otherwise of the work needed
Q.51. If the heat of solution of an ideal gas in a liquid is negative, then its solubility at a given partial pressure varies with the temperature as
(A) Solubility increases as temperature increases
(B) Solubility decreases as temperature increases
(C) Solubility is independent of temperature
(D) Solubility increases or decreases with temperature depending on the Gibb's free energy change of solution

GATE - 1998

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.52. A mixture of A and B conforms closely to Raoult's law. The pure component vapour pressures \(\mathrm{P}_{\mathrm{A}}\) sat and \(\mathrm{P}_{\mathrm{B}}\) sat in kPa are given by ( t in \({ }^{0} \mathrm{C}\) )
\[
\begin{aligned}
& \ln P_{A}{ }^{\text {sat }}=14.27-\frac{2945}{t+224} \\
& \ln P_{B}{ }^{\text {sat }}=14.20-\frac{2973}{t+209}
\end{aligned}
\]

If the bubble point of a certain mixture of A and B is \(76^{\circ} \mathrm{C}\) at a total pressure of 80 kPa , find the composition of the first vapour that forms.
Q.53. The reaction \(\mathrm{N}_{2}+\mathrm{O}_{2}=2 \mathrm{NO}\) takes place in the gas phase at \(2700^{\circ} \mathrm{C}\) and 2025 kPa . The reaction mixture initially comprises 15 mole \(\%\) oxygen, 77 mole \(\%\) nitrogen and the rest inerts. The standard Gibb's Free Energy change for the reaction is \(113.83 \mathrm{~kJ} / \mathrm{mole}\) at this temperature. Assuming ideal gas behaviour, calculate the partial pressures of all species at equilibrium.

GATE - 1998
Q.54. Which of the following is true for Virial equation of state
(A) Virial coefficients are universal constants
(B) Virial coefficient B represents three body interactions
(C) Virial coefficients are functions of temperature only
(D) For some gases, Virial equations and ideal gas equations are the same.

GATE - 1999
Q.55. A gas mixture of three components is brought in contact with a dispersion of an organic phase in water. The degrees of freedom of the system are
(A) 4
(B) 3
(C) 5
(D) 6

GATE - 1999

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.56. Saturated solution of benzene in water is in equilibrium with a mixture of air and vapours of benzene and water at room temperature and pressure. Mole fraction of benzene in liquid is \(x_{B}\) and the vapour pressures of benzene and water at these conditions are \(\mathrm{p}_{\mathrm{v}}{ }^{\mathrm{n}}\) and \(\mathrm{p}_{\mathrm{v}}{ }^{\mathrm{w}}\) respectively. The partial pressure of benzene in air-vapour mixture is
(A) \(p_{v}{ }^{B}\)
(B) \(x_{B} p_{v}{ }^{B}\)
(C) \(\left(p_{a t m}-p_{v}{ }^{w}\right) x_{B}\)
(D) \(\mathrm{X}_{\mathrm{B}} \mathrm{p}_{\mathrm{atm}}\)
GATE - 1999

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.57. Maxwell's relation corresponding to the identity, \(d H=T d S+V d P-\sum \mu_{i} d n_{i}\)
\[
\begin{gathered}
(A)\left(\frac{\delta T}{\delta V}\right)_{s, n_{j}}=\left(\frac{\delta P}{\delta S}\right)_{v, n_{j}}(B)\left(\frac{\delta S}{\delta P}\right)_{T, n_{j}}=\left(\frac{\delta V}{\delta T}\right)_{P, n_{j}} \\
(C)\left(\frac{\delta S}{\delta V}\right)_{T, n_{j}}=\left(\frac{\delta P}{\delta T}\right)_{V, n_{j}} \quad(D)\left(\frac{\delta T}{\delta P}\right)_{s, n_{j}}=\left(\frac{\delta V}{\delta S}\right)_{P, n_{j}}
\end{gathered}
\]
Q.58. The vapour pressures of benzene and toluene are 3 and \(4 / 3\) atmospheres respectively. A liquid feed of 0.4 moles of benzene and 0.6 moles of toluene is vapourized. Assuming that the products are in equilibrium, the vapour phase mole fraction of benzene is
(A) 0.4
(B) 0.6
(C) 0.8
(D) 0.2
GATE - 1999

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.59. For the binary system methanol (1) and benzene (2), the recommended values of the Wilson parameters at \(68{ }^{\circ} \mathrm{C}\) are \(\mathrm{A}_{12}=0.1751\) and \(\mathrm{A}_{21}=0.3456\). The vapour pressure of pure species at \(68{ }^{\circ} \mathrm{C}\) are \(\mathrm{p}_{1}{ }^{\text {sat }}=68.75 \mathrm{kPa}\) and \(\mathrm{p}_{2}{ }^{\text {sat }}=115.89 \mathrm{kPa}\). Show that the given system can form an azeotrope at 68 C . Assume that the vapour behaves like an ideal gas.

GATE - 1999

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.60. In a binary liquid solution of components \(A\) and \(B\), if component \(A\) exhibits positive deviation from Raoult's law, then components B,
(A) exhibits positive deviation from Raoult's law
(B) exhibits negative deviation from Raoult's law
(C) obeys Raoult's law
(D) may exhibit either positive or negative deviation from Raoult's law
Q.61. Assume that benzene is insoluble in water. The normal boiling points of benzene and water are \(80.1^{\circ} \mathrm{C}\) and \(100^{\circ} \mathrm{C}\), respectively. At a pressure of 1 atm , the boiling point of a mixture of benzene and water is
(A) \(80.1^{\circ} \mathrm{C}\)
(B) less than \(80.1{ }^{\circ} \mathrm{C}\)
(C) \(100{ }^{\circ} \mathrm{C}\)
(D) greater than \(80.1^{\circ} \mathrm{C}\) but less than \(100^{\circ} \mathrm{C}\)
Q.62. On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point \(A\). Then at point \(A\), the slope of the reversible adiabatic line \(\left(\frac{\delta P}{\delta V}\right)_{s}\) and the slope of the reversible isothermal line \(\left(\frac{\delta P}{\delta V}\right)_{T}\) are related as
(A) \(\left(\frac{\delta P}{\delta V}\right)_{s}=\left(\frac{\delta P}{\delta V}\right)_{T}\)
(B) \(\left(\frac{\delta P}{\delta V}\right)_{s}=\left\{\left(\frac{\delta P}{\delta V}\right)_{T}\right\}^{\gamma}\)
(C) \(\left(\frac{\delta P}{\delta V}\right)_{s}=\gamma\left(\frac{\delta P}{\delta V}\right)_{T}\)
(D) \(\left(\frac{\delta P}{\delta V}\right)_{s}=\frac{1}{\gamma}\left(\frac{\delta P}{\delta V}\right)_{T}\)
Q.63. The thermal efficiency of a reversible heat engine operating between two given thermal reservoirs is 0.4 . The device is used either as a refrigerator or as a heat pump between the same reservoirs. Then the coefficient of performance as a refrigerator \((\mathrm{COP})_{\mathrm{R}}\) and the coefficient of performance as a heat pump \((\mathrm{COP})_{\mathrm{HP}}\) are
(A) \((\mathrm{COP})_{\mathrm{R}}=(\mathrm{COP})_{\mathrm{HP}}=0.6\)
(B) \((\mathrm{COP})_{\mathrm{R}}=2.5 ;(\mathrm{COP})_{\mathrm{HP}}=1.5\)
(C) \((\mathrm{COP})_{\mathrm{R}}=1.5 ;(\mathrm{COP})_{\mathrm{HP}}=2.5\)
(D) \((\mathrm{COP})_{\mathrm{R}}=(\mathrm{COP})_{\mathrm{HP}}=2.5\)

GATE - 2000

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.64. At a given temperature, \(\mathrm{K}_{1}, \mathrm{~K}_{2}\) and \(\mathrm{K}_{3}\) are the equilibrium constants for the following reaction \(1,2,3\) respectively :
\(\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})\)
\(\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})\)
\(\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftarrows \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})\)
Then \(\mathrm{K}_{1}, \mathrm{~K}_{2}\) and \(\mathrm{K}_{3}\) are related as
(A) \(\mathrm{K}_{3}=\mathrm{K}_{1} \mathrm{~K}_{2}\)
(B) \(\mathrm{K}_{3}=\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)^{0.5}\)
(C) \(\mathrm{K}_{3}=\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right) / 2\)
(D) \(\mathrm{K}_{3}=\left(\mathrm{K}_{1} \mathrm{~K}_{2}\right)^{2}\)
Q.65. Industrial grade methanol can be produced according to the reaction
\[
\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \stackrel{\mathrm{CH}}{3} \mathrm{OH}(\mathrm{g}) \text {. }
\]
For this reaction \(\Delta \mathrm{G}_{4}^{0}{ }_{400}=-1.3484 \mathrm{~kJ}\). If an equimolal mixture of CO and \(\mathrm{H}_{2}\) is fed to
a reactor maintained at 400 K and 10 bar, determine the fraction of CO that is
converted into \(\mathrm{CH}_{3} \mathrm{OH}\) at equilibrium. Assume that the reaction mixture behaves like
an ideal gas.
GATE - 2000

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.66. In a binary mixture the activity coefficient \(y_{1}\) of component 1 , in the entire range of composition, is given by \(\quad R \ln \gamma_{1}=A x_{2}{ }^{2}+B x_{2}{ }^{3}\)
where R, A and B are constants. Derive the expression for the activity coefficient of component 2.
Q.67. A reasonably general expression for vapour-liquid phase equilibrium at low to moderate pressures is \(\phi_{i} y_{i} \mathrm{P}=\gamma_{i} \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}{ }^{0}\) Where fi is a vapour fugacity coefficient, \(\gamma_{i}\) is the liquid activity coefficient, and fi is the fugacity of pure component i . The Ki value ( \(\mathrm{y}_{\mathrm{i}}=\) \(\mathrm{K}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\) ) is therefore in general, a function of
(A) temperature only
(B) temperature and pressure only
(C) temperature, pressure, and liquid composition xi only
(D) temperature pressure, liquid composition \(x_{i}\), and vapour composition \(y _ { i } \longdiv { \text { GATE-2001 } }\)
Q.68. High pressure steam is expanded adiabatically and reversibly through a well insulated turbine which produces some shaft work. If the enthalpy change and entropy change across the turbine are represented by \(\Delta \mathrm{H}\) and \(\Delta \mathrm{S}\), respectively, for this process :
(A) \(\Delta \mathrm{H}=0\) and \(\Delta \mathrm{S}=0\)
(B) \(\Delta \mathrm{H} \neq 0\) and \(\Delta \mathrm{S}=0\)
(C) \(\Delta \mathrm{H}=0\) and \(\Delta \mathrm{S} \neq 0\)
(D) \(\Delta \mathrm{H}=0\) and \(\Delta \mathrm{S}=0\)
Q.69. The Maxwell relation derived from the differential expression for the Helmholtz free energy (dA) is :
(A) \(\left(\frac{\partial \mathrm{T}}{\partial \mathrm{V}}\right)_{\mathrm{s}}=-\left(\frac{\partial \mathrm{P}}{\partial \mathrm{S}}\right)_{\mathrm{v}}\)
(B) \(\left(\frac{\partial T}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P}\)
(C) \(\left(\frac{\partial \mathrm{V}}{\partial \mathrm{S}}\right)_{\mathrm{P}}=\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{s}}\)
(D) \(\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{\mathrm{V}}\)
Q.70. At \(100^{\circ} \mathrm{C}\), water and methylcyclohexane both have vapour pressures of 1.0 atm . Also at \(100^{\circ} \mathrm{C}\), the latent heats of vapourization of these compounds are \(40.63 \mathrm{~kJ} / \mathrm{mol}\) for water and \(31.55 \mathrm{~kJ} / \mathrm{mol}\) for methylcyclohexane. The vapour pressure of water at \(150^{\circ} \mathrm{C}\) is 4.69 atm . At \(150^{\circ} \mathrm{C}\), the vapour pressure of methycyclohexane would be expected to be :
(A) significantly less than 4.69 atm
(B) nearly equal to 4.69 atm
(C) significantly more than 4.69 atm
(D) indeterminate due to a lack of data
Q.71. Air enters an adiabatic compressor at 300 K . The exit temperature for a compression ratio of 3 , assuming air to be an ideal gas \(\left(y=C_{p} / C_{v}=7 / 5\right)\) and the process to be reversible, is
(A) \(300\left(3^{2 / 7}\right)\)
(B) \(300\left(3^{3 / 5}\right)\)
(C) \(300\left(3^{3 / 7}\right)\)
(D) \(300\left(3^{5 / 7}\right)\)
Q.72. \(100 \mathrm{~m}^{3}\) of carbon dioxide initially at 423 K and \(50 \mathrm{bar}\left(50 \times 10^{5} \mathrm{~Pa}\right)\) is to be isothermally compressed in a frictionless piston and cylinder device to a final pressure of 300 bar \(\left(300 \times 10^{5} \mathrm{~Pa}\right)\). Assuming ideal gas behaviour \(\left(\mathrm{R}=8.314 \times 10^{-2}\right.\) bar \(\mathrm{m}^{3} / \mathrm{kmol} \mathrm{K}\) ).
(a) Write a general expression for the energy balance for the gas within the piston and cylinder device as the system, and define all the terms.
(b) Calculate the volume of the compressed carbon dioxide gas at 300 bar
(c) Calculate the work done to compress the carbon dioxide gas
(d) Calculate the heat flow on compression
Q.73. Normal pentane is isomerized to isopentane and neopentane at 500 K and atmospheric pressure. Determine the equilibrium composition (mole \%) of the three components. State any assumptions made. Consider the reactions to be :
(a) \(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g}) \rightleftharpoons\) iso \(-\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})\)
(b) \(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g}) \rightleftharpoons\) neo \(-\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})\)

Given Data :
Equilibrium Constant for reaction (a) at \(500 \mathrm{~K}, \mathrm{~K}_{1}=3.519\)
Equilibrium Constant for reaction (b) at \(500 \mathrm{~K}, \mathrm{~K}_{2}=0.682\)
Q.74. Which of the following conditions are satisfied at the critical point by the P-V-T relation of a real fluid?
(A) \(\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}=\left(\frac{\partial P}{\partial V}\right)_{T}=0\)
(B) \(\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}>0 ;\left(\frac{\partial P}{\partial V}\right)_{T}=0\)
(c) \(\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}<0 ;\left(\frac{\partial P}{\partial V}\right)_{T}=0\)
(D) \(\left(\frac{\partial^{2} \mathbf{P}}{\partial \mathrm{~V}^{2}}\right)_{\mathrm{T}}>0 ;\left(\frac{\partial \mathbf{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}>0\)
Q.75. The number of degrees of freedom for an azeotropic mixture of ethanol and water in vapour-liquid equilibrium is
(A) 3
(B) 1
(C) 2
(D) 0
GATE - 2002

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.76. The partial molar enthalpy of a component in an ideal binary gas mixture of composition z , at a temperature T and pressure P , is a function only of (A) T
(B) T and P
(C) T, P and z
(D) T and z
Q.77. Which of the following identities can be most easily used to verify steam table data for superheated steam -
(A) \(\left(\frac{\partial T}{\partial V}\right)_{s}=-\left(\frac{\partial P}{\partial S}\right)_{v}\)
\((B)\left(\frac{\partial T}{\partial P}\right)_{s}=-\left(\frac{\partial V}{\partial S}\right)_{P}\)
(C) \(\left(\frac{\partial P}{\partial T}\right)_{v}=-\left(\frac{\partial S}{\partial V}\right)_{T}\)
(D) \(\left(\frac{\partial V}{\partial T}\right)_{P}=-\left(\frac{\partial S}{\partial P}\right)_{T}\)
Q.78. Steam undergoes isentropic expansion in a turbine from 5000 kPa and \(400^{\circ} \mathrm{C}\) (entropy \(=6.65 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\) ) to 150 kPa (entropy of saturated liquid \(=1.4336 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\), entropy of saturated vapour \(=7.2234 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}\) ). The exit condition of steam is
(A) superheated vapour
(B) partially condensed vapour with quality of 0.9
(C) saturated vapour
(D) partially condensed vapour with quality of 0.1
Q.79. \(1 \mathrm{~m}^{3}\) of an ideal gas at 500 K and 1000 kPa expands reversibly to 5 times its initial volume in an insulated container. If the specific heat capacity (at constant pressure) of the gas is \(21 \mathrm{~J} / \mathrm{mol} \mathrm{K}\), the final temperature will be
(A) 35 K
(B) 174 K
(C) 274 K
(D) 154 K
GATE - 2002

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.80. The Excess Gibbs free energy for cyclohexanone (1)/ phenol (2) is given by \(\left(\mathrm{G}^{\mathrm{E} / R T}\right)=-2.1 \mathrm{x}_{1} \mathrm{x}_{2}\); where, \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) are the mole fractions of components 1 and 2 in the liquid phase. The vapour pressures of components at 417 K are \(\mathrm{P}_{1}{ }^{\text {sat }}=75.2 \mathrm{kPa}\) and \(\mathrm{P}_{2}^{\text {sat }}=31.66 \mathrm{kPa}\).
(a) Derive the expressions for activity coefficient of each component as a function of composition.
(b) Verify whether the expressions derived in (a) satisfy the Gibbs - Dubem equation.
(c) Determine the equilibrium pressure P and vapour composition for a liquid phase composition \(\mathrm{x}_{1}=0.8\) and 417 K . Assume vapour phase to be ideal gas. GATE-2002
Q.81. Methane gas is compressed in a steady state flow process from 101 kPa and \(27{ }^{0} \mathrm{C}\) to 500 kPa and \(165{ }^{\circ} \mathrm{C}\). Assume methane to be an ideal gas under all conditions
\(\left[\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}\right.\); specific heat capacity, \(\mathrm{C}_{\mathrm{p}} / \mathrm{R}=1.7+0.009 \mathrm{~T}(\mathrm{~K})\) ] and surroundings to be at a constant temperature of \(27^{\circ} \mathrm{C}\). If the total entropy change (of the system and surroundings) during the process is \(4.5 \mathrm{~J} / \mathrm{mol} \mathrm{K}\), find
(a) The specific enthalpy and specific entropy changes of methane.
(b) The net shaft work done and heat exchanged with the surroundings, per mole of methane.
(c) The thermodynamic efficiency of the process.
Q.82. For estimation of heat capacity of a solid compound, one can use (A) Clapeyron's equation
(B) Gibb's equation
(C) Kopp's rule
(D) Trouton's rule
Q.83. For organic compounds, Group Contribution Method can be used for estimation of (A) critical properties
(B) specific gravity
(C) specific volume
(D) thermal conductivity

GATE - 2003

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.84. When dilute aqueous solutions of two salts are mixed, the process is associated with (A) decrease in temperature
(B) increase in temperature
(C) no change in temperature
(D) change in temperature which is a function of composition

GATE - 2003

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.85. In Joule's experiments, an insulated container contains 20 kg of water initially at 25 \({ }^{0} \mathrm{C}\). It is stirred by an agitator, which is made to turn by a slowly failing body weighing 40 kg through a height of 4 m . The process is repeated 500 times. The acceleration due to gravity is \(9.8 \mathrm{~m} \mathrm{~s}^{-2}\). Neglecting the heat capacity of agitator, the temperature of water (in \({ }^{0} \mathrm{C}\) ) is
(A) 40.5
(B) 34.4
(C) 26.8
(D) 25

GATE - 2003

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.86. One mole of Nitrogen at 8 bar and 600 K is contained in a piston-cylinder arrangement. It is brought to 1 bar isothermally against a resisting pressure of 1 bar . The work done (in Joules) by the gas is -
(A) 30554
(B) 10373
(C) 4988.4
(D) 4364.9
GATE - 2003
Q.87. For water at \(300^{\circ} \mathrm{C}\), it has a vapour pressure 8592.7 kPa and fugacity 6738.9 kPa . Under these conditions, one mole of water in liquid phase has a volume \(25.28 \mathrm{~cm}^{3}\), and that in vapour phase \(391.1 \mathrm{~cm}^{3}\). Fugacity of water (in kPa ) at 9000 kPa will be
(A) 6738.9
(B) 6753.5
(C) 7058.3
(D) 9000
GATE - 2003
Q.88. A solid metallic block weighing 5 kg has an initial temperature of \(500^{\circ} \mathrm{C} ; 40 \mathrm{~kg}\) of water initially at \(25^{\circ} \mathrm{C}\) is contained in a perfectly insulated tank. The metallic block is brought into contact with water. Both of them come to equilibrium. Specific heat of block material is \(0.4 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\). Ignoring the effect of expansion and contraction, and also the heat capacity of tank, the total entropy change in \(\mathrm{kJ} \mathrm{kg}^{-1} \mathrm{~K}^{-1}\) is
(A) - 1.87
(B) 0.0
(C) 1.26
(D) 3.91
GATE - 2003
Q.89. The following heat engine produces power of \(100,000 \mathrm{~kW}\). The heat engine operates between 800 K and 300 K . It has a thermal efficiency equal to \(50 \%\) of that of the Carnet engine for the same temperatures. The rate at which heat is absorbed from the hot reservoir is
(A) \(100,000 \mathrm{~kW}\)
(B) \(160,000 \mathrm{~kW}\)
(C) \(200,000 \mathrm{~kW}\)
(D) \(320,000 \mathrm{~kW}\)
Q.90. A steam turbine operates with a superheated steam flowing at \(1 \mathrm{~kg} \mathrm{~s}^{-1}\). This steam is supplied at 441 bar and \(500^{\circ} \mathrm{C}\), and discharges at 1.01325 bar and \(100{ }^{\circ} \mathrm{C}\).
Data: 41 bar, \(500{ }^{\circ} \mathrm{C} \quad\) Enthalpy : \(3443.9 \mathrm{~kJ} \mathrm{~kg}^{-1}\)
Entropy : \(7.0785 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\)
41 bar, \(251.8{ }^{0} \mathrm{C}\)
Enthalpy of saturated steam : \(2799.9 \mathrm{~kJ} \mathrm{~kg}^{-1}\)
Entropy of saturated steam : \(6.0583 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\)
1.01325 bar, \(100{ }^{\circ} \mathrm{C}\) Enthalpy of saturated vapour : \(2676 \mathrm{~kJ} \mathrm{~kg}^{-1}\) Enthalpy of saturated liquid : \(419.1 \mathrm{~kJ} \mathrm{~kg}^{-1}\) Entropy of saturated vapour : \(7.3554 \mathrm{~kJ} \mathrm{~kg}^{-1}\) Entropy of saturated liquid : \(1.3069 \mathrm{~kJ} \mathrm{~kg}^{-1}\)
The maximum power output (in kW ) will be
(A) 644.0
(B) 767.9
(C) 871.3
(D) 3024.8

GATE - 2003

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.91. At \(60^{\circ} \mathrm{C}\), vapour pressure of methanol and water are 84.562 kPa and 19.953 kPa respectively. An aqueous solution of methanol at \(60^{\circ} \mathrm{C}\) exerts a pressure of 39.223 kPa ; the liquid phase and vapour phase mole fractions of methanol are 0.1686 and 0.5714 respectively. Activity coefficient of methanol is
(A) 1.572
(B) 1.9398
(C) 3.389
(D) 4.238
GATE - 2003
Q.92. One kg of saturated steam at \(100^{\circ} \mathrm{C}\) and 1.01325 bar is contained in a rigid walled vessel. It has a volume \(1.673 \mathrm{~m}^{3}\). It cools to \(98^{\circ} \mathrm{C}\), the saturation pressure is 0.943 bar ; one kg of water vapour under these conditions has a volume of \(1.789 \mathrm{~m}^{3}\).
(i) The amount of water vapour condensed (in kg ) is
(A) 0.0
(B) 0.065
(C) 0.1
(D) 1.0
(ii) The latent heat of condensation ( \(\mathrm{kJ} \mathrm{kg}^{-1}\) ) under these conditions is
(A) 40732
(B) 2676
(C) 2263
(D) 540
GATE - 2003
Q.93. For an ideal gas mixture undergoing a reversible gaseous phase chemical reaction, the equilibrium constant
(A) is independent of pressure
(B) increases with pressure
(C) decreases with pressure
(D) increases/decreases with pressure depending on the stoichiometric coefficients of the reaction.

GATE - 2004
Q.94. As pressure approaches zero, the ratio of fugacity to pressure ( \(\mathrm{f} / \mathrm{P}\) ) for a gas approaches
(A) Zero
(B) Unity
(C) Infinity
(D) an indeterminate value

GATE - 2004

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.95. A perfectly insulated container of volume V is divided into two equal halves by a partition. One side is under vacuum while the other side has one mole of an ideal gas (with constant heat capacity) at 298 K . If the partition is broken, the final temperature of the gas in the container
(A) will be greater than 298 K
(B) will be 298 K
(C) will be less than 298 K
(D) cannot be determined.
Q.96. The number of degrees of freedom for an azeotropic mixture in a two component vapour-liquid equilibria is/are
(A) zero
(B) one
(C) two
(D) three
GATE - 2004

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.97. A car tyre of volume \(0.057 \mathrm{~m}^{3}\) is inflated to 300 kPa at 300 K . After the car is driven for ten hours, the pressure in the tyre increases to 330 kPa . Assume air is an ideal gas and \(\mathrm{C}_{\mathrm{v}}\) for air is \(21 \mathrm{~J} /(\mathrm{mol} \mathrm{K})\). The change in the internal energy of air in the tyre in \(\mathrm{J} / \mathrm{mol}\) is \(\begin{array}{lllll}\text { (A) } 380 & \text { (B) } 630 & \text { (C) } 760 & \text { (D) } 880 & \text { GATE - 2004 }\end{array}\)

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.98. A gas obeys \(\mathrm{P}(\mathrm{v}-\mathrm{b})=\) RT. The work obtained from reversible isothermal expansion of one mole of this gas from an initial molar volume \(v_{i}\) to a final molar volume \(v_{f}\) is
(A) \(R T \ln \left(\frac{v_{f}}{v_{l}}\right)\)
(B) \(R T \ln \left(\frac{v_{f}-b}{v_{l}}\right)\)
(C) \(R T \ln \left(\frac{v_{f}}{v_{l}-b}\right)\)
(D) \(R T \ln \left(\frac{v_{f}-b}{v_{l}-b}\right)\)
Q.99. A cyclic engine exchanges heat with two reservoirs maintained at 100 and \(300^{\circ} \mathrm{C}\), respectively. The maximum work (in J) that can be obtained from 1000 J of heat extracted from the hot reservoir is
(A) 349
(B) 651
(C) 667
(D) 1000

GATE - 2004

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.100. The vapour pressure of water is given by
\[
\ln P^{s a t}=A-\frac{5000}{T}
\]
where A is a constant, \(\mathrm{P}^{\text {sat }}\) is vapour pressure in atm, and T is temperature in K . The vapour pressure of water in atm at \(50^{\circ} \mathrm{C}\) is approximately
(A) 0.07
(B) 0.09
(C) 0.11
(D) 0.13
Q.101. At standard conditions,
\(\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightleftarrows 2 \mathrm{NO}_{2} \Delta \mathrm{G}^{0}=100 \mathrm{~kJ} / \mathrm{mol}\)
\(\mathrm{NO}+1 / 2 \mathrm{O}_{2} \rightleftarrows \mathrm{NO}_{2} \Delta \mathrm{G}^{0}=-35 \mathrm{~kJ} / \mathrm{mol}\)
The standard free energy of formation of NO in \(\mathrm{kJ} / \mathrm{mol}\) is
\begin{tabular}{llll} 
(A) 15 & (B) 30 & (C) 85 & (D) 170
\end{tabular}
GATE - 2004
Q.102. In van der Waals equation of state, what are the criteria applied at the critical point in determine the parameters ' \(a\) ' and ' \(b\) '?
(a) \(\left(\frac{\partial P}{\partial V}\right)_{T}=0 ;\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}=0\)
(b) \(\left(\frac{\partial V}{\partial P}\right)_{T}=0 ;\left(\frac{\partial^{2} V}{\partial P^{2}}\right)_{T}=0\)
(c) \(\left(\frac{\partial P}{\partial T}\right)_{V}=0 ;\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{V}=0\)
(d) \(\left(\frac{\partial V}{\partial T}\right)_{P}=0 ;\left(\frac{\partial^{2} V}{\partial T^{2}}\right)_{P}=0\)
Q.103. Which one of the following statements in TRUE?
(A) Heat can be fully converted into work
(B) Work cannot be fully converted into heat
(C) The efficiency of a heat engine increases as the temperature of the heat source is increased while keeping the temperature of the heat sink fixed
(D) A cyclic process can be devised whose sole effect is to transfer heat from a lower temperature to a higher temperature
Q.104. A Carnot heat engine cycle is working with an ideal gas. The work performed by the gas during the adiabatic expansion and compression steps, \(\mathrm{W}_{1}\) and \(\mathrm{W}_{2}\) respectively, are related as
(A) \(\left|\mathrm{W}_{1}\right|>\left|\mathrm{W}_{2}\right|\)
(B) \(\left|\mathrm{W}_{1}\right|<\left|\mathrm{W}_{2}\right|\)
(C) \(\mathrm{W}_{1}=\mathrm{W}_{2}\)
(D) \(\mathrm{W}_{1}=-\mathrm{W}_{2}\)

GATE - 2005
Q.105. The van Laar activity coefficient model for a binary mixture is given by the form
\[
\left.\ln \gamma_{1}=\frac{A^{*}}{\left(1+\frac{A^{*}}{B^{*}} x_{1}\right.}\right) \quad \ln \gamma_{2}=\frac{B^{*}}{\left(1+\frac{B^{*}}{A^{*}} \frac{x_{2}}{x_{1}}\right)}
\]

Given \(\gamma_{1}=1.40, \gamma_{2}=1.25, \mathrm{x}_{1}=0.25, \mathrm{x}_{2}=0.75\), determine the constants \(\mathrm{A}^{*}\) and \(\mathrm{B}^{*}\),
(A) \(\mathrm{A}^{*}=0.5, \mathrm{~B}^{*}=0.3\)
(B) \(\mathrm{A}^{*}=3, \mathrm{~B}^{*}=0.5\)
(C) \(\mathrm{A}^{*}=0.333, \mathrm{~B}^{*}=0.2\)
(D) \(\mathrm{A}^{*}=2, \mathrm{~B}^{*}=0.333\)
Q.106. What is the actual power required to drive a reciprocating air compressor which has to compress \(34 \mathrm{~m}^{3}\) of air per minute from \(1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\) to \(4.052 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\) ? Assume that \(\mathrm{PV}^{1.25}\) is constant, where P is the pressure and V is the volume, and the efficiency of the compressor is \(85 \%\).
(A) 107.9 kW
(B) 200 kW
(C) 82.6 kW
(D) 91.7 kW
GATE - 2005
Q.107. A frictionless cylinder piston assembly contains an ideal gas. Initially pressure ( \(\mathrm{P}_{1}\) ) \(=100 \mathrm{kPa}\), temperature \(\left(\mathrm{T}_{1}\right)=500 \mathrm{~K}\) and volume \(\left(\mathrm{V}_{1}\right)=700 \times 10^{-6} \mathrm{~m}^{3}\). This system is supplied with 100 J of heat and pressure is maintained constant at 100 kPa . The enthalpy variation is given by \(\mathrm{H}(\mathrm{J} / \mathrm{mol})=30000+50 \mathrm{~T}\); where T is the temperature in K , and the universal gas constant \(\mathrm{R}=8.314 \mathrm{~J} /(\) mole K\()\).
(i) The final volume of the gas \(\left(\mathrm{V}_{2}\right)\) in \(\mathrm{m}^{3}\) is
(A) \(700 \times 10^{-6}\)
(B) \(866.32 \times 10^{-6}\)
(C) \(934.29 \times 10^{-6}\)
(D) \(1000.23 \times 10^{-6}\)

(ii) The change in internal energy of the gas in J is
(A) 0
(B) 100
(C) 23.43
(D) 83.37

GATE - 2005
Q.108. At a given temperature and pressure, a liquid mixture of benzene and toluene is in equilibrium with its vapor. The available degree(s) of freedom is (are)
(A) zero
(B) 1
(C) 2
(D) 3
GATE - 2006
Q.109. A heat engine operates at \(75 \%\) of the maximum possible efficiency. The ratio of the heat source temperature (in K ) to the heat sink temperature (in K ) is \(5 / 3\). The fraction of the heat supplied that is converted to work is
(A) 0.2
(B) 0.3
(C) 0.4
(D) 0.6
GATE - 2006

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.110. For the isentropic expansion of an ideal gas from the initial conditions \(\mathrm{T}_{1}, \mathrm{~T}_{1}\) to the final conditions \(\mathrm{T}_{2}, \mathrm{~T}_{2}\), which ONE of the following relations is valid? \(\left(\gamma=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right)\)
(a) \(\left(\frac{P_{1}}{P_{2}}\right)=\left(\frac{T_{2}}{T_{1}}\right)^{\gamma}\)
(b) \(\left(\frac{P_{1}}{P_{2}}\right)=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}}\)
(c) \(\left(\frac{P_{1}}{P_{2}}\right)=\left(\frac{T_{1}}{T_{2}}\right)\)
(d) \(\left(\frac{P_{1}}{P_{2}}\right)=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{\gamma-1}{\gamma}}\)
Q.111. Match the following :
\(\begin{array}{ll}\text { (a) Heat } & \text { (i) State Function } \\ \text { (b) Internal energy } & \text { (ii) Path Function }\end{array}\)
(b) Internal energy
(c) Work
(d) Entropy
(A) (a)-(ii); (b)-(i); (c)-(i); (d)-(i)
(B) (a)-(ii); (b)-(i); (c)-(ii); (d)-(ii)
(C) (a)-(ii); (b)-(ii); (c)-(i); (d)-(i)
(D) (a)-(ii); (b)-(i); (c)-(ii); (d)-(i)
Q.112. For a reversible exothermic gas phase reaction, \(\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}\), the equilibrium conversion will increase with
(A) increase in pressure and increase in temperature
(B) decrease in pressure and increase in temperature
(C) increase in pressure and decrease in temperature
(D) decrease in pressure and decrease in temperature
Q.113. For a binary mixture of A and B at 400 K and 1 atm, which ONE of the following equilibrium states deviates significantly from ideality?
Given : where
\(\mathrm{P}_{\mathrm{A}}{ }^{\text {sat }}=\) vapor pressure of A , atm
\(\mathrm{T}=\) temperature, K
\(\mathrm{P}_{\mathrm{A}}=\) partial pressure of A , atm
\(\mathrm{x}_{\mathrm{A}}=\) mole fraction of A in liquid
\(y_{A}=\) mole fraction of \(A\) in vapor
(A) \(\mathrm{x}_{\mathrm{A}}=0.5 ; \mathrm{y}_{\mathrm{A}}=0.25\)
(B) \(\mathrm{x}_{\mathrm{A}}=0.5 ; \mathrm{P}_{\mathrm{A}}=0.25\)
(C) \(\mathrm{x}_{\mathrm{A}}=0.5 ; \mathrm{P}_{\mathrm{A}}=0.5\)
(D) \(\mathrm{x}_{\mathrm{A}}=0.6 ; \mathrm{y}_{\mathrm{A}}=0.3\)
Q.114. Pure A at \(200^{\circ} \mathrm{C}\) is fed to a steady state adiabatic continuous reactor at the rate of \(100 \mathrm{~kg} / \mathrm{hr}\) where it undergoes an exothermic reaction to give its isomer B . The product stream is at temperature \(500^{\circ} \mathrm{C}\). The heat of reaction is \(21 \mathrm{~kJ} / \mathrm{mol}\) of A and the specific heat of the reaction mixture is constant at \(35 \mathrm{~J} /\left(\mathrm{mol}{ }^{0} \mathrm{C}\right)\). The conversion in the reactor is (A) \(25 \%\)
(B) \(50 \%\)
(C) \(75 \%\)
(D) \(100 \%\)

GATE - 2006

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.115. The molar density of water vapor at the normal boiling point of water is \(33 \mathrm{~mol} / \mathrm{m}^{3}\). The compressibility factor under these conditions is close to which ONE of the following? \(\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})\)
(A) 0.75
(B) 1
(C) 1.25
(D) 1.5

GATE - 2006

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.116. If \(T_{A}\) and \(T_{B}\) are the boiling points of pure \(A\) and pure \(B\) respectively and \(T_{A B}\) is that of a non-homogeneous immiscible mixture of A and B , then
(A) \(\mathrm{T}_{\mathrm{AB}}<\mathrm{T}_{\mathrm{A}}\) and \(\mathrm{T}_{\mathrm{B}}\)
(B) \(\mathrm{T}_{\mathrm{AB}}>\mathrm{T}_{\mathrm{A}}\) and \(\mathrm{T}_{\mathrm{B}}\)
(C) \(T_{A}>T_{A B}>T_{B}\)
(D) \(\mathrm{T}_{\mathrm{B}}>\mathrm{T}_{\mathrm{AB}}>\mathrm{T}_{\mathrm{A}}\)

GATE - 2007
Q.117. The state of an ideal gas is changed from ( \(\mathrm{T}_{1}, \mathrm{P}_{1}\) ) to \(\left(\mathrm{T}_{2}, \mathrm{P}_{2}\right)\) in a constant volume process. To calculate the change in enthalpy, \(\Delta \mathrm{h}\), ALL of the following properties/variables are required.
(A) \(\mathrm{C}_{\mathrm{V}}, \mathrm{P}_{1}, \mathrm{P}_{2}\)
(B) \(\mathrm{C}_{\mathrm{P}}, \mathrm{T}_{1}, \mathrm{~T}_{2}\)
(C) \(\mathrm{C}_{\mathrm{P}}, \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{P}_{1}, \mathrm{P}_{2}\)
(D) \(\mathrm{C}_{\mathrm{V}}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2}\)

GATE - 2007
Q.118. The change in entropy of the system, \(\Delta \mathrm{S}_{\text {sys }}\), undergoing a cyclic irreversible process is (A) greater than 0
(B) less than zero
(C) equal to zero
(D) equal to the \(\Delta \mathrm{S}_{\text {surroundings }}\)

GATE - 2007

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.119. Parameters ' \(a\) ' and ' \(b\) ' in the van der Waals and other cubic equations of state represent (A) \(a\) - molecular weight \(b\) - molecular polarity
(B) a - molecular size b - molecular attraction
(C) \(a\) - molecular size \(b\) - molecular speed
(D) \(a\) - molecular attraction \(b\) - molecular size

GATE - 2007

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.120. If \(\mathrm{m}_{\mathrm{i}}, \bar{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}^{\mathrm{R}}, \mathrm{m}_{\mathrm{i}}^{\mathrm{E}}\) are molar, partial molar, residual and excess properties respectively for a pure species " i ", the mixture property M of a binary non-ideal mixture of components 1 and 2 , is given by
(A) \(x_{1}+x_{2}\)
(B) \(x_{1} m_{1}{ }^{R}+x_{2} m_{2}^{R}\)
(C) \(\mathrm{x}_{1} \mathrm{~m}_{1}+\mathrm{x}_{2} \mathrm{~m}_{2}\)
(D) \(\mathrm{x}_{1} \mathrm{~m}_{1}^{\mathrm{E}}+\mathrm{x}_{2} \mathrm{~m}_{2}\)
Q.121. For the two paths as shown in the figure, one reversible and one irreversible, the state of the system from a to b ,

\(\begin{array}{llll}\text { (A) } \Delta \mathrm{U}, \mathrm{Q}, \mathrm{W} \text { are same } & \text { (B) } \Delta \mathrm{U} \text {, is same } & \text { (C) } \mathrm{Q}, \mathrm{W} \text { are same } & \text { (D) } \Delta \mathrm{U}, \mathrm{Q} \text {, are different. }\end{array}\)
Q.122. For a pure substance, the Maxwell's relation obtained from the fundamental property relation \(\mathrm{du}=\mathrm{Tds}-\mathrm{Pdv}\) is
\[
\begin{array}{ll}
\text { (A) }\left(\frac{\partial T}{\partial v}\right)_{s}=-\left(\frac{\partial P}{\partial s}\right)_{v} & \text { (B) }\left(\frac{\partial P}{\partial T}\right)_{v}=\left(\frac{\partial s}{\partial v}\right)_{T} \\
\text { (C) }\left(\frac{\partial T}{\partial P}\right)_{s}=\left(\frac{\partial v}{\partial s}\right)_{P} & \text { (D) }\left(\frac{\partial v}{\partial T}\right)_{P}=-\left(\frac{\partial s}{\partial P}\right)_{T}
\end{array}
\]


Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.124. 2 kg of steam in a piston-cylinder device at 400 kPa and \(175^{\circ} \mathrm{C}\) undergoes a mechanically reversible, isothermal compression to a final pressure such that the steam becomes just saturated. What is the work, W, required for the process.
Data :
\(\mathrm{T}=175^{\circ} \mathrm{C}, \mathrm{P}=400 \mathrm{kPa}-\mathrm{v}=0.503 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}=2606 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}=7.055 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\) \(\mathrm{T}=175^{\circ} \mathrm{C}\), satd. vapor \(-\mathrm{v}=0.216 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{u}=2579 \mathrm{~kJ} / \mathrm{kg}, \mathrm{s}=6.622 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}\)
(A) 0 kJ
(B) 230 kJ
(C) 334 kJ
(D) 388 kJ
GATE - 2007
Q.124. Vapor phase hydration of \(\mathrm{C}_{2} \mathrm{H}_{4}\) to ethanol by the following reaction
\[
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})
\]
attains equilibrium at 400 K and 3 bar. The standard Gibbs free energy change of reaction at these conditions is \(\Delta \mathrm{g}^{\circ}=4000 \mathrm{~J} / \mathrm{mol}\). For 2 moles of an equimolar feed of ethylene and steam, the equation in terms of the extent of reaction \(\varepsilon\) (in mols) at equilibrium is
(A) \(\frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^{2}}-0.3=0\)
(B) \(\frac{(1-\varepsilon)^{2}}{\varepsilon(2-\varepsilon)}-0.9=0\)
(C) \(\frac{\varepsilon}{(1-\varepsilon)^{2}}-0.3=0\)
\[
\text { (D) } \frac{\varepsilon(2-\varepsilon)}{(1-\varepsilon)^{2}}-0.9=0
\]
Q.126. A methanol-water vapor liquid system is at equilibrium at \(60^{\circ} \mathrm{C}\) and 60 kPa . The mole fraction of methanol in liquid is 0.5 and in vapor is 0.8 . Vapor pressure of methanol and water at \(60^{\circ} \mathrm{C}\) are 85 kPa and 20 kPa respectively. Assuming vapor phase to be an ideal gas mixture, what is the activity coefficient of water in the liquid phase?
(A) 0.3
(B) 1.2
(C) 1.6
(D) 7.5
GATE - 2007

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.127. What is the excess Gibbs free energy ( \(\mathrm{g}^{\mathrm{E}}\), in \(\mathrm{J} / \mathrm{mol}\) ) of the liquid mixture ?
(A) 9.7
(B) 388
(C) 422
(D) 3227
GATE - 2007

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.128. A perfectly insulated cylinder of volume \(0.6 \mathrm{~m}^{3}\) is initially divided into two parts by a thin, frictionless piston, as shown in the figure. The smaller part of volume \(0.2 \mathrm{~m}^{3}\) has ideal gas at 6 bar pressure and \(100^{\circ} \mathrm{C}\). The other part is evacuated.
(i) At certain instant of time \(t\), the stopper is removed and the piston moves out freely to the other end. The final temperature is
(A) \(-140^{\circ} \mathrm{C}\)
(B) \(-33^{\circ} \mathrm{C}\)
(C) \(33^{\circ} \mathrm{C}\)
(D) \(100^{\circ} \mathrm{C}\)
(ii) The cylinder insulation is now removed and the piston is pushed back to restore the system to its initial state. If this is to be achieved only by doing work on the system (no heat addition, only heat removal allowed), what is the minimum work required ?
(A) 3.4 kJ
(B) 107 kJ
(C) 132 kJ
(D) 240 kJ

GATE - 2007
Q.129. For a Carnot refrigerator operating between \(40^{\circ} \mathrm{C}\) and \(25^{\circ} \mathrm{C}\), the coefficient of performance is
(A) 1
(B) 1.67
(C) 19.88
(D) 39.74
GATE - 2008

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.130. The work done by one mole of a van der Waals fluid undergoing reversible isothermal expansion from initial volume \(V_{i}\) to final volume \(V_{f}\) is
(A) \(R T \ln \left(\frac{V_{f}}{V_{i}}\right)\)
(B) \(R T \ln \left(\frac{V_{f}-V}{V_{i}-V}\right)\)
(C) \(R T \ln \left(\frac{V_{f}-V}{V_{i}-V}\right)-a\left(\frac{1}{V_{f}}-\frac{1}{V_{i}}\right)\)
(D) \(R T \ln \left(\frac{V_{f}-V}{V_{i}-V}\right)+a\left(\frac{1}{V_{f}}-\frac{1}{V_{i}}\right)\)
Q.131. For a system containing species \(P, Q\) and \(R\), composition at point \(k\) on the ternary plot is

(A) \(62.5 \% \mathrm{P}, 12.5 \% \mathrm{Q}, 25 \% \mathrm{R}\)
(B) \(25 \% \mathrm{P}, 62.5 \% \mathrm{Q}, 12.5 \% \mathrm{R}\)
(C) \(12.5 \% \mathrm{P}, 62.5 \% \mathrm{Q}, 25 \% \mathrm{R}\)
(D) \(12.5 \% \mathrm{P}, 25 \% \mathrm{Q}, 62.5 \% \mathrm{R}\)
Q.132. The molar volume (v) of a binary mixture, of species 1 and 2 having mole fractions \(x_{1}\) and \(x_{2}\) respectively is given by \(v=220 x_{1}+180 x_{2}+x_{1} x_{2}\left(90 x_{1}+50 x_{2}\right)\). The partial molar volume of species 2 at \(x_{2}=0.3\) is (A) 183.06
(B) 212.34
(C) 229.54
(D) 256.26

GATE - 2008
Q.133. The standard Gibbs free energy change and enthalpy change at \(25^{\circ} \mathrm{C}\) for the liquid phase reaction
\[
\mathrm{CH}_{3} \mathrm{COOH}(1)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(1) \longrightarrow \mathrm{CH}_{2} \mathrm{COOC}_{2} \mathrm{H}_{5}(1)+\mathrm{H}_{2} \mathrm{O}(1)
\]
are given as \(\Delta \mathrm{G}^{\circ}{ }_{298}=-4650 \mathrm{~J} / \mathrm{mol}\) and \(\Delta \mathrm{H}^{\circ}{ }_{298}=-3640 \mathrm{~J} / \mathrm{mol}\). If the solution is ideal and enthalpy change is assumed to be constant, the equilibrium constant at \(95^{\circ} \mathrm{C}\) is (A) 0.65
(B) 4.94
(C) 6.54
(D) 8.65

GATE - 2008
Q.134. A binary mixture containing species 1 and 2 forms an azeotrope at \(105.4^{\circ} \mathrm{C}\) and 1.013 bar. The liquid phase mole fraction of component \(1\left(\mathrm{x}_{1}\right)\) of this azeotrope is 0.62 . At \(105.4^{\circ} \mathrm{C}\), the pure component vapor pressures for species 1 and 2 are 0.878 bar and 0.665 bar, respectively. Assume that the vapour phase is an ideal gas mixture. The van Laar constants, A and B, are given by the expressions :
\[
A=\left[1+\frac{x_{2} \ln \gamma_{2}}{x_{1} \ln \gamma_{1}}\right]^{2} \ln \gamma_{1} \quad B=\left[1+\frac{x_{1} \ln \gamma_{1}}{x_{2} \ln \gamma_{2}}\right]^{2} \ln \gamma_{2}
\]
(i). The activity coefficients \(\left(\gamma_{1}, \gamma_{2}\right)\) under these conditions are
(A) \((0.88,0.66)\)
(B) \((1.15,1.52)\)
(C) \((1.52,1.15)\)
(D) \((1.52,0.88)\)
(ii).The van Laar constants (A, B) are
(A) \((0.92,0.87)\)
(B) \((1.00,1.21)\)
(C) \((1.12,1.00)\)
(D) \((1.52,1.15)\)
GATE - 2008

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.135. An ideal gas at temperature \(T_{1}\) and pressure \(P_{1}\) is compressed isothermally to pressure \(P_{2}\left(>P_{1}\right)\) in a closed system. Which ONE of the following is TRUE for internal energy \((\mathrm{U})\) and Gibbs free energy \((\mathrm{G})\) of the gas at the two states ?
(A) \(\mathrm{U}_{1}=\mathrm{U}_{2}, \mathrm{G}_{1}>\mathrm{G}_{2}\)
(B) \(\mathrm{U}_{1}=\mathrm{U}_{2}, \mathrm{G}_{1}<\mathrm{G}_{2}\)
(C) \(\mathrm{U}_{1}>\mathrm{U}_{2}, \mathrm{G}_{1}=\mathrm{G}_{2}\)
(D) \(\mathrm{U}_{1}<\mathrm{U}_{2}, \mathrm{G}_{1}=\mathrm{G}_{2}\)
Q.136. For a binary mixture at constant temperature and pressure, which ONE of the following relations between activity coefficient \(\left(\gamma_{\mathrm{i}}\right)\) and mole fraction \(\left(\mathrm{x}_{\mathrm{i}}\right)\) is thermodynamically consistent?
(A) \(\ln \gamma_{1}=-1+2 x_{1}-x_{1}^{2} ; \quad \ln \gamma_{2}=\frac{1}{2} x_{1}^{2}\)
(B) \(\ln \gamma_{1}=-1+2 x_{1}-x_{1}^{2} ; \quad \ln \gamma_{2}=x_{1}^{2}\)
(C) \(\ln \gamma_{1}=-1+2 x_{1}-x_{1}^{2} ; \quad \ln \gamma_{2}=-\frac{1}{2} x_{1}^{2}\)
(D) \(\ln \gamma_{1}=-1+2 x_{1}-x_{1}^{2} ; \ln \gamma_{2}=-x_{1}^{2}\)
Q.137. An ideal gas with molar heat capacity \({\mathrm{c}_{\mathrm{P}}=\frac{5}{2} \mathrm{R}}\) (where \(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}\) ) is compressed adiabatically from 1 bar and 300 K to pressure \(\mathrm{P}_{2}\) in a closed system. The final temperature after compression is 600 K and the mechanical efficiency of compression is \(50 \%\).
(i) The work required for compression (in \(\mathrm{kJ} / \mathrm{mol}\) ) is
(A) 3.74
(B) 6.24
(C) 7.48
(D) 12.48
(ii) The final pressure \(\mathrm{P}_{2}\) (in bar) is
(A) \(2^{3 / 4}\)
(B) \(2^{5 / 4}\)
(C) \(2^{3 / 2}\)
(D) \(2^{5 / 2}\)

GATE - 2009

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.138. An equimolar liquid mixture of species 1 and 2 is in equilibrium with its vapour at 400 K . At this temperature, the vapour pressures of the species are \(\mathrm{P}_{1}{ }^{\text {sat }}=180 \mathrm{kPa}\) and \(\mathrm{P}_{2}^{\text {sat }}=120 \mathrm{kPa}\). Assuming that Raoult's law is valid, the value of \(\mathrm{y}_{1}\) is
(A) 0.30
(B) 0.41
(C) 0.50
(D) 0.60
GATE - 2010

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.139. A new linear temperature scale, denoted by \({ }^{\circ} \mathrm{S}\), has been developed, where the freezing point of water is \(200^{\circ} \mathrm{S}\) and the boiling point is \(400^{\circ} \mathrm{S}\). On this scale, \(500^{\circ} \mathrm{S}\) corresponds, in degrees Celsius, to
(A) \(100^{\circ} \mathrm{C}\)
(B) \(125^{\circ} \mathrm{C}\)
(C) \(150^{\circ} \mathrm{C}\)
(D) \(300^{\circ} \mathrm{C}\)
GATE - 2010
Q.140. A saturated liquid at 1500 kPa and 500 K , with an enthalpy of \(750 \mathrm{~kJ} / \mathrm{kg}\), is throttled to a liquid-vapour mixture at 150 kPa and 300 K . At the exit conditions, the enthalpy of the saturated liquid is \(500 \mathrm{~kJ} / \mathrm{kg}\) and the enthalpy of the saturated vapour is \(2500 \mathrm{~kJ} / \mathrm{kg}\). The percentage of the original liquid, which vaporizes, is
(A) \(87.5 \%\)
(B) \(67 \%\)
(C) \(12.5 \%\)
(D) \(10 \%\)
GATE - 2010
Q.141. At constant \(T\) and \(P\), the molar density of a binary mixture is given by \(\rho=1+x_{2}\) , where \(x_{2}\) is the mole fraction of component 2 . The partial molar volume at infinite dilution for component \(1, \overline{\mathrm{~V}}_{1}{ }^{\infty}\), is
(A) 0.75
(B) 1.0
(C) 2.0
(D) 4.0
GATE - 2010

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.142. Minimum work \((\mathrm{W})\) required to separate a binary gas mixture at a temperature \(\mathrm{T}_{0}\) and pressure \(\mathrm{P}_{0}\)
\[
W=-R T_{0}\left[y_{1} \ln \left(\frac{\bar{f}_{1}}{f_{\text {pure }, 1}}\right)+y_{2} \ln \left(\frac{\bar{f}_{2}}{f_{\text {pure }, 2}}\right)\right]
\]
is where \(y_{1}\) and \(y_{2}\) are mole fractions. \(f_{\text {pure. } 1}\) and \(f_{\text {pure. } 2}\) are fugacities of pure species at \(T_{0}\) and \(P_{0}\) and \(f_{1}\) and \(f_{2}\) are fugacities of species in the mixture at \(T_{0}, P_{0}\) and \(y_{1}\). If the mixture is ideal then W is
(A) 0
(B) \(-\mathrm{RT}_{0}\left[\mathrm{y}_{1} \ln \mathrm{y}_{1}+\mathrm{y}_{2} \ln \mathrm{y}_{2}\right]\)
(C) \(\mathrm{RT}_{0}\left[\mathrm{y}_{1} \ln \mathrm{y}_{1}+\mathrm{y}_{2} \ln \mathrm{y}_{2}\right]\)
(D) \(\mathrm{RT}_{0}\)

GATE - 2011
Q.143. The partial molar enthalpies of mixing (in \(\mathrm{J} / \mathrm{mol}\) ) for benzene (component 1 ) and cyclohexane (component 2) at 300 K and 1 bar are given by \(\overline{\Delta H}_{1}=3600 x_{2}^{2}\) and \(\overline{\Delta H}_{2}=3600 x_{1}^{2}\), where \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) are the mole fractions. When ONE mole of benzene is added to TWO moles of cyclohexane, the enthalpy change (in \(J\) ) is
(A) 3600
(B) 2400
(C) 2000
(D) 800
GATE - 2011
Q.144. One mole of methane is contained in a leak proof piston - cylinder assembly at 8 bar and 1000 K . The gas undergoes isothermal expansion to 4 bar under reversible conditions. Methane can be considered as an ideal gas under these conditions. The value of universal gas constant is \(8.314 \mathrm{~J} . \mathrm{mol}^{-1} \mathrm{~K}^{-1}\). The heat transferred (in kJ ) during the process is
(A) 11.52
(B) 5.76
(C) 4.15
(D) 2.38

GATE - 2011
Q.145. Two systems are available for compressing \(6 \mathrm{~m}^{3} / \mathrm{hr}\) of ambient air to 10 bar. The first one uses a single stage compressor \(\left(\mathrm{K}_{1}\right)\) and the second one uses a multistage compressor with inter - stage cooling \(\left(\mathrm{K}_{2}\right)\). Which ONE of the following statements is INCORRECT?
(A) \(\mathrm{K}_{2}\) will have knockout pots in between the stages
(B) Discharge temperature of \(\mathrm{K}_{1}\) will be higher than that of \(\mathrm{K}_{2}\)
(C) \(\mathrm{K}_{2}\) will consume more power than \(\mathrm{K}_{1}\)
(D) Cost of \(\mathrm{K}_{2}\) will be more than that of \(\mathrm{K}_{1}\).
Q.146. Consider a binary mixture of methyl ethyl ketone (component 1) and toluene (component 2). At 323 K the activity coefficients \(\gamma_{1}\) and \(\gamma_{2}\) are given by
\[
\begin{aligned}
& \ln \gamma_{1}=x_{2}^{2}\left(\Psi_{1}-\Psi_{2}+4 \Psi_{2} \mathrm{X}_{1}\right), \\
& \ln \gamma_{2}=x_{1}^{2}\left(\Psi_{1}+\Psi_{2}-4 \Psi_{2} \mathrm{X}_{2}\right)
\end{aligned}
\]
where \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\) are the mole fractions in the liquid mixture, and \(\Psi_{1}\) and \(\Psi_{2}\) are parameters independent of composition. At the same temperature, the infinite dilution activity coefficients \(\gamma_{1}{ }^{\infty}\) and \(\gamma_{2}{ }^{\infty}\) are given by \(\ln \gamma_{1}{ }^{\infty}=0.4\) and \(\ln \gamma_{1}{ }^{\infty}=0.2\) The vapour pressure of methyl ethyl ketone and toluene at 323 K are 36.9 and 12.3 kPa respectively. Assuming that the vapour phase is ideal, the equilibrium pressure (in kPa ) of a liquid mixture containing \(90 \mathrm{~mol} \%\) toluene is
(A) 19
(B) 18
(C) 16
(D) 15

GATE - 2011
Q.147. In a throttling process, the pressure of an ideal gas reduces by \(50 \%\). If \(\mathrm{C}_{\mathrm{P}}\) and \(\mathrm{C}_{\mathrm{V}}\) are the heat capacities at constant pressure and constant volume, respectively ( \(\gamma=\) \(\mathrm{C}_{\mathrm{P}} / \mathrm{C}_{\mathrm{V}}\) ), the specific volume will change by a factor of (A) 2
(B) \(2^{1 / \gamma}\)
(C) \(2^{(\gamma-1) / \gamma}\)
(D) 0.5

GATE - 2012
Q.148. If the temperature of saturated water is increased infinitesimally at constant entropy, the resulting state of water will be
(A) Liquid
(B) Liquid - vapor coexistence
(C) Saturated vapor
(D) Solid
Q.149. In a parallel flow heat exchanger operating under steady state, hot liquid enters at a temperature \(\mathrm{T}_{\mathrm{h}, \mathrm{in}}\) and leaves at a temperature \(\mathrm{T}_{\mathrm{h}, \text { out }}\). Cold liquid enters at a temperature \(\mathrm{T}_{\mathrm{c}, \text { in }}\) and leaves at a temperature \(\mathrm{T}_{\mathrm{c}, \text { out }}\). Neglect any heat loss from the heat exchanger to the surrounding. If \(\mathrm{T}_{\mathrm{h}, \mathrm{in}} \gg \mathrm{T}_{\mathrm{c}, \mathrm{i}}\), then for a given me interval, which ONE of the following statements is true ?
(A) Entropy gained by the cold stream is GREATER than entropy lost by the hot stream (B) Entropy gained by the cold stream is EQUAL to the entropy lost by the hot stream
(C) Entropy gained by the cold stream is LESS than the entropy lost by the hot stream
(D) Entropy gained by the cold stream is ZERO

GATE - 2012
Q.150. For an exothermic reversible reaction, which one of the following correctly describes the dependence of the equilibrium constant \((\mathrm{K})\) with temperature \((\mathrm{T})\) and pressure ( P ) ?
(A) K is independent of T and P
(B) K increases with an increase in T and P
(C) K increases with T and decreases with P
(D) K decreases with an increase in T and is independent of P

GATE - 2012

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.151. An insulated, evacuated container is connected to a supply line of an ideal gas at pressure \(\operatorname{Ps}\), temperature \(T_{s}\) and specific volume \(\mathrm{v}_{\mathrm{s}}\). The container is filled with the gas until the pressure in the container reaches \(\mathrm{P}_{\mathrm{s}}\). There is no heat transfer between the supply line to the container, and kinetic and potential energies are negligible. If \(\mathrm{C}_{\mathrm{P}}\) and \(\mathrm{C}_{\mathrm{V}}\) are the heat capacities at constant pressure and constant volume, respectively \(\left(\gamma=C_{P} / C_{V}\right)\), then the final temperature of the gas in the container is
(A) \(\gamma \mathrm{T}_{\mathrm{S}}(\mathrm{B}) \mathrm{T}_{\mathrm{S}}(\mathrm{C})(\gamma-1) \mathrm{T}_{\mathrm{s}}(\mathrm{D})(\gamma-1) \mathrm{T}_{\mathrm{s}} / \gamma\)
Q.152. Consider a binary liquid mixture at constant temperature \(T\) and pressure \(P\). If the enthalpy change of mixing, \(\Delta H=5 \mathrm{x}_{1} \mathrm{x}_{2}\) where \(\mathrm{x}_{1}\) and \(\mathrm{x}_{2}\). are the mole fraction of species 1 and 2 respectively and the entropy change of mixing
\[
\Delta \mathrm{S}=-\mathrm{R}\left[\mathrm{x}_{1} \ln \mathrm{x}_{1}+\mathrm{x}_{2} \ln \mathrm{x}_{2}\right](\text { with } \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K})
\]
then the minimum value of the Gibbs free energy change of mixing at 300 K occurs when
(A) \(x_{1}=0\)
(B) \(\mathrm{x}_{1}=0.2\)
(C) \(\mathrm{x}_{1}=0.4\)
(D) \(\mathrm{x}_{1}=0.5\)
GATE - 2012
Q.153. A gaseous system contains \(\mathrm{H}_{2}, \mathrm{I}_{2}\), and HI , which participate in the gas-phase reaction \(2 \mathrm{HI} \rightleftarrows \mathrm{H}_{2}+\mathrm{I}_{2}\). At a state of reaction equilibrium, the number of thermodynamic degrees of freedom is .
Q.154. The thermodynamic state of a closed system containing a pure fluid changes from \(\left(\mathrm{T}_{1}, \mathrm{P}_{1}\right)\) to \(\left(\mathrm{T}_{2}, \mathrm{P}_{2}\right)\), where T and P denote the temperature and pressure, respectively. Let Q denote the heat absorbed (>0 if absorbed by the system) and W the work done ( \(>0\) if done by the system). Neglect changes in kinetic and potential energies. Which one of the following is CORRECT ?
(A) Q is path-independent and W is path-dependent
(B) Q is path-dependent and W is path-dependent
(C) \((\mathrm{Q}-\mathrm{W})\) is path-independent
(D) \((\mathrm{Q}+\mathrm{W})\) is path-independent

GATE - 2013
Q.155. An equation of state is explicit in pressure \(p\) and cubic in the specific volume \(v\). At the critical point ' \(c\) ', the isotherm passing through ' \(c\) ' satisfies
(A) \(\frac{\partial \mathrm{p}}{\partial \mathrm{v}}<0, \frac{\partial^{2} p}{\partial v^{2}}=0\)
(B) \(\frac{\partial p}{\partial v}>0, \frac{\partial^{2} p}{\partial v^{2}}<0\)
(C) \(\frac{\partial \mathrm{p}}{\partial \mathrm{v}}=0, \frac{\partial^{2} p}{\partial v^{2}}>0\)
(D) \(\quad \frac{\partial \mathbf{p}}{\partial v}=0, \frac{\partial^{2} p}{\partial v^{2}}=0\)
Q.156. The units of the isothermal compressibility are
\begin{tabular}{llll|l|l|}
\hline (A) \(\mathrm{m}^{-3}\) & (B) \(\mathrm{Pa}^{-1}\) & (C) \(\mathrm{m}^{3} \mathrm{~Pa}^{-1}\) & (D) \(\mathrm{m}^{-3} \mathrm{~Pa}^{-1}\) & GATE - 2013 \\
\hline
\end{tabular}

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.157. In a process occurring in a closed system F, the heat transferred from F to the surroundings \(E\) is 600 J . If the temperature of \(E\) is 300 K and that of \(F\) is in the range 380 -400 K , the entropy changes of the surroundings \(\left(\Delta \mathrm{S}_{\mathrm{E}}\right)\) and system \(\left(\Delta \mathrm{S}_{\mathrm{F}}\right)\), in \(\mathrm{J} / \mathrm{K}\), are given by
(A) \(\Delta \mathrm{S}_{\mathrm{E}}=2, \Delta \mathrm{~S}_{\mathrm{F}}=-2\)
(B) \(\Delta \mathrm{S}_{\mathrm{E}}=-2, \Delta \mathrm{~S}_{\mathrm{F}}=2\)
(C) \(\Delta \mathrm{S}_{\mathrm{E}}=2, \Delta \mathrm{~S}_{\mathrm{F}}<-2\)
(D) \(\Delta \mathrm{S}_{\mathrm{E}}=2, \Delta \mathrm{~S}_{\mathrm{F}}>-2\)
Q.158. A binary; liquid mixture is in equilibrium with its vapor at a temperature \(\mathrm{T}=\)
300K. The liquid mole fraction \(\mathrm{x}_{1}\) of species 1 is 0.4 and the molar excess Gibbs free
energy is \(200 \mathrm{~J} /\) mol. The value of the universal gas constant is \(8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}\), and \(\gamma_{\mathrm{i}}\)
denotes the liquid-phase activity coefficient of species i. If \(\ln \left(\gamma_{1}\right)=0.09\), then the value of
\(\ln \left(\gamma_{2}\right)\), up to 2 digits after the decimal point, is
GATE-2013

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.159. Calculate the heat required (in kJ , up to 1 digit after the decimal point) to raise the temperature of 1 mole of a solid material from \(100^{\circ} \mathrm{C}\) to \(1000^{\circ} \mathrm{C}\). The specific heat \(\left(\mathrm{C}_{\mathrm{p}}\right)\) of the material (in \(\mathrm{J} / \mathrm{mol}-\mathrm{K}\) ) is expressed as \(\mathrm{C}_{\mathrm{p}}=20+0.005 \mathrm{~T}\), where T is in K . Assume no phase change. \(\qquad\) .
Q.160. From the following list, identify the properties which are equal in both vapour and liquid phases at equilibrium
P. Density
Q. Temperature
R. Chemical potential
S. Enthalpy
(A) P and Q only
(B) Q and R only
(C) R and S only
(D) P and S only GATE - 2014

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.161. In a closed system, the isentropic expansion of an ideal gas with constant specific heats is represented by
(A)

(B)

(C)

(D)


\section*{Q.162. Match the following:}
\begin{tabular}{|c|c|}
\hline Group 1 & Group 2 \\
\hline \(\mathrm{P}^{\left(\frac{\partial G}{\partial n_{i}}\right)_{T, P, n_{j \neq i}}}\) & I. Arrhenius equation \\
\hline \(\mathrm{Q}^{\left(\frac{\partial G}{\partial n_{i}}\right)_{S, V, n_{j \neq i}}}\) & II. Reaction equilibrium constant \\
\hline R. \begin{tabular}{c|c|}
\hline \(\exp \left(\frac{-\Delta G_{r e a c t i o n ~}^{0}}{R T}\right)\) & III. Chemical potential \\
\hline \(\mathrm{S}^{\sum\left(n_{i} d \mu_{i}\right)_{T, P}}\) & IV.Gibbs-Duhem equation \\
\hline
\end{tabular} \\
\hline
\end{tabular}
(A) Q-III, R-I, S-II
(B) Q-III, R-II, S-IV
(C) P-III, R-II, S-IV
(D) P-III, R-IV, S-I
Q.163. Which ONE of the following is CORRECT for an ideal gas in a closed system?
\((A)\left(\frac{\partial U}{\partial V}\right)_{S} V=n R\left(\frac{\partial U}{\partial S}\right)_{V}\)
\((B)\left(\frac{\partial H}{\partial P}\right)_{S} P=n R\left(\frac{\partial H}{\partial S}\right)_{P}\)
\((C)\left(\frac{\partial U}{\partial V}\right)_{S} V=n R\left(\frac{\partial H}{\partial S}\right)_{P}\)
(D) \(\left(\frac{\partial H}{\partial P}\right)_{S} P=n R\left(\frac{\partial U}{\partial S}\right)_{V}\)
Q.164. Consider a binary liquid mixture at equilibrium with its vapour at \(25^{\circ} \mathrm{C}\). Antoine equation for this system is given as \(\log _{10} p_{t}^{5 a t}=A-\frac{B}{t+C}\).
where \(t\) is in C and p in Torr. The Antoine constants ( \(\mathrm{A}, \mathrm{B}\), and C ) for the system are given in the following table
\begin{tabular}{|l|l|l|l|}
\hline Component & A & B & C \\
\hline 1 & 7.0 & 1210 & 230 \\
\hline 2 & 6.5 & 1206 & 223 \\
\hline
\end{tabular}

The vapour phase is assumed to be ideal and the activity coefficients ( \(\gamma_{\mathrm{i}}\) ) for the non-ideal liquid phase are given by
\[
\begin{aligned}
& \ln \left(\gamma_{1}\right)=x_{2}^{2}\left[2-0.6 x_{1}\right] \\
& \ln \left(\gamma_{2}\right)=x_{1}^{2}\left[1.7+0.6 x_{2}\right]
\end{aligned}
\]

If the mole fraction of component 1 in liquid phase \(\left(\mathrm{x}_{1}\right)\) is 0.11 , then the mole fraction of component 1 in vapour phase \(y_{1}\) ) is
(A) 0.50
(B) 0.60
(C) 0.70
(D) 0.80

GATE - 2014
Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.165. For a pure liquid, the rate of change of vapour pressure with temperature is 0.1 \(\mathrm{bar} / \mathrm{K}\) in the temperature range of 300 to 350 K . If the boiling point of the liquid at 2 bar is 320 K , the temperature (in K ) at which it will boil at 1 bar (up to one decimal place) is

GATE - 2015
Q.166. Three identical closed systems of a pure gas are taken from an initial temperature and pressure \(\left(\mathrm{T}_{1}, \mathrm{P}_{1}\right)\) to a final state \(\left(\mathrm{T}_{2}, \mathrm{P}_{2}\right)\) each by a different path. Which of the following is ALWAYS TRUE for the three systems? ( \(\Delta\) represents the change between the initial and final states, U, S, G, Q and W are internal energy, entropy, Gibbs free energy, heat added and work done, respectively.)
(A) \(\Delta \mathrm{U}, \Delta \mathrm{S}, \mathrm{Q}\) are same
(B) \(\mathrm{W}, \Delta \mathrm{U}, \Delta \mathrm{G}\) are same
(C) \(\Delta \mathrm{S}, \mathrm{W}, \mathrm{Q}\) are same
(D) \(\Delta \mathrm{G}, \Delta \mathrm{U}, \Delta \mathrm{S}\) are same
Q.167. For a gas phase cracking reaction \(\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}\) at \(300^{\circ} \mathrm{C}\), the Gibbs free energy of the reaction at this temperature is \(\Delta \mathrm{G}^{\mathrm{o}}=-2750 \mathrm{~J} / \mathrm{mol}\). The pressure is 1 bar and the gas phase can be assumed to be ideal. The universal gas constant \(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}\). The fractional molar conversion of \(A\) at equilibrium is :
(A) 0.44
(B) 0.50
(C) 0.64
(D) 0.80
GATE - 2015

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.168. If \(\mathrm{v}, \mathrm{u}, \mathrm{s}\) and g represent respectively the molar volume, molar internal energy, molar entropy and molar Gibbs free energy, then match the entries in the le and right columns below and choose the correct option.
\begin{tabular}{ll} 
P. \(-(\partial \mathrm{u} / \partial \mathrm{v})_{\mathrm{s}}\) & I. Temperature \\
Q. \((\partial \mathrm{g} / \partial \mathrm{P})_{\mathrm{T}}\) & II. Pressure \\
R. \(-(\partial \mathrm{g} / \partial \mathrm{T})_{\mathrm{P}}\) & III. v \\
S. \((\partial \mathrm{u} / \partial \mathrm{s})_{\mathrm{v}}\) & IV. S
\end{tabular}
(A) P-II, Q-III, R-IV, S-I
(B) P-II, Q-IV, R-III, S-I
(C) P-I, Q-IV, R-II, S-III
(D) P-III, Q-II, R-IV, S-I
Q.169. An ideal gas is initially at a pressure of 0.1 MPa and a total volume of \(2 \mathrm{~m}^{3}\). It is first compressed to 1 MPa by a reversible adiabatic process and then cooled at constant pressure to a final volume of \(0.2 \mathrm{~m}^{3}\). The total work done (in kJ ) on the gas for the entire process (up to one decimal place) is \(\qquad\) Data: \(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}\); heat capacity at constant pressure \(\left(\mathrm{C}_{\mathrm{P}}\right)=2.5 \mathrm{R}\)
Q.170. Given that molar residual Gibbs free energy, \(\mathrm{g}^{\mathrm{R}}\), and molar residual volume, \(\mathrm{v}^{\mathrm{R}}\), are related as
\[
\frac{g^{R}}{R T}=\int_{0}^{P}\left(\frac{V^{R}}{R T}\right) d P
\]
\[
\text { , find } \mathrm{g}^{\mathrm{R}} \text { at } \mathrm{T}=27^{\circ} \mathrm{C} \text { and } \mathrm{P}=0.2 \mathrm{MPa} \text {. The gas may be }
\] assumed to follow the virial equation of state, \(\mathrm{z}=1+\mathrm{BP} / \mathrm{RT}\), where \(\mathrm{B}=-10^{-4} \mathrm{~m}^{3} / \mathrm{mol}\) at the given conditions ( \(\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} . \mathrm{K}\) ). The value of \(\mathrm{g}^{\mathrm{R}}\) in \(\mathrm{J} / \mathrm{mol}\) is:
(A) 0.008
(B) -2.4
(C) 20
(D) -20
GATE - 2015
Q.171. A binary mixture of components (1) and (2) forms an azeotrope at \(130^{\circ} \mathrm{C}\) and \(\mathrm{x}_{1}=\) 0.3. The liquid phase non-ideality is described by \(\ln \gamma_{1}=\mathrm{Ax}_{2}{ }^{2}\) and \(\ln \gamma_{2}=\mathrm{Ax}_{1}{ }^{2}\), where \(\gamma_{1}\), \(\gamma_{2}\) are the activity coefficients, and \(\mathrm{x}_{1}, \mathrm{x}_{2}\) are the liquid phase mole fractions. For both components, the fugacity coefficients are 0.9 at the azeotropic composition. Saturated vapor pressures at \(130^{\circ} \mathrm{C}\) are \(\mathrm{P}_{1}{ }^{\text {sat }}=70\) bar and \(\mathrm{P}_{2}{ }^{\text {sat }}=30\) bar. The total pressure in bars for the above azeotropic system (up to two decimal places) is \(\qquad\) GATE - 2015
Q.172. The partial molar enthalpy (in \(\mathrm{kJ} / \mathrm{mol}\) ) of species 1 in a binary mixture is given by \(\bar{h}_{1}=2-60 x_{2}^{2}+100 x_{1} x_{2}^{2}\), where \(x_{1}\) and \(x_{2}\) are the mole fractions of species 1 and 2, respectively. The partial molar enthalpy (in \(\mathrm{kJ} / \mathrm{mol}\), rounded off to the first decimal place) of species 1 at infinite dilution is \(\qquad\) .
```

GATE - 2016

```
Q.173. An ideal gas is adiabatically and irreversibly compressed from 3 bar and 300 K to 6 bar in a closed system. The work repaired for the irreversible compression is 1.5 times the work that is required for reversible compression from the same initial temperature and pressure to the same final pressure. The molar heat capacity of the gas at constant volume is \(30 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) (assumed to be independent of temperature), universal gas constant, R is \(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), ratio of molar heat capacities is 1.277 . The temperature (in K , rounded off to the first decimal place) of the gas at the final state in the irreversible compression case is \(\qquad\) .

GATE - 2016
Q.174. A gas obeying the Clausius equation of state is isothermally compressed from 5 MPa to 15 MPa in a closed system at 400 K . The Clausius equation of state is
\[
P=\frac{R T}{v-b(T)}
\]
where P is the pressure, T is the temperature, \(v\) is the molar volume and R is the universal gas constant. The parameter \(b\) in the above equation varies with temperature as \(b(T)=b_{0}\) \(+b_{1} T\) with \(b_{0}=4 \times 10^{-5} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\) and \(\mathrm{b}_{1}=1.35 \times 10^{-7} \mathrm{~m}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\). The effect of pressure on the molar enthalpy (h) at a constant temperature is given by
\[
\left(\frac{\partial h}{\partial P}\right)_{T}=v-T\left(\frac{\partial v}{\partial T}\right)_{P}
\]

Let \(h_{i}\) and \(h_{f}\) denote the initial and final molar enthalpies, respectively. The change in the molar enthalpy \(\mathrm{h}_{\mathrm{f}}-\mathrm{h}_{\mathrm{i}}\) (in \(\mathrm{J} \mathrm{mol}^{-1}\), rounded off to the first decimal place) for this process is \(\qquad\) .
Q.175. A binary system at a constant pressure with species ' 1 ' and ' 2 ' is described by the two-suffix Margules equation, \(\frac{g^{E}}{R T}=3 x_{1} x_{2}\), where g E is the molar excess Gibbs free energy, R in the universal gas constant, T is the temperature and \(\mathrm{x}_{1}, \mathrm{x}_{2}\) are the mole fractions of species 1 and 2 , respectively. At a temperature \(\mathrm{T}, \frac{g_{1}}{R T}=1\) and \(\frac{g_{2}}{R T}=2\), where \(\mathrm{g}_{1}\) and \(\mathrm{g}_{2}\) are the molar Gibbs free energies of pure species 1 and 2 , respectively. At the same temperature, g represents the molar Gibbs free energy of the mixture. For a binary mixture with 40 mole \(\%\) of species 1 , the value (rounded off to the second decimal place) of \(\frac{g}{R T}\) is _.
Q.176. The volumetric properties of two gases M and N are described by the generalized compressibility chart which expresses the compressibility factor \((Z)\) as a function of reduced pressure and reduced temperature only. The operating pressure ( P ) and temperature \((\mathrm{T})\) of two gases M and N along with their critical properties \(\left(\mathrm{P}_{\mathrm{C}}, \mathrm{T}_{\mathrm{C}}\right)\) are given in the table below
\begin{tabular}{|l|l|l|l|l|}
\hline Gas & P (bar) & \(\mathrm{T}(\mathrm{K})\) & \(\mathrm{P}_{\mathrm{C}}\) (bar) & \(\mathrm{T}_{\mathrm{C}}(\mathrm{K})\) \\
\hline M & 25 & 300 & 75 & 150 \\
\hline N & 75 & 1000 & 225 & 500 \\
\hline
\end{tabular}
\(\mathrm{Z}_{\mathrm{M}}\) and \(\mathrm{Z}_{\mathrm{N}}\) are the compressibility factor of the gases M and N under the given operating conditions, respectively. The relation between \(Z_{M}\) and \(Z_{N}\) is,
(A) \(\mathrm{Z}_{\mathrm{M}}=8 \mathrm{Z}_{\mathrm{N}}\)
(B) \(Z_{M}=3 Z_{N}\)
(B) \(\mathrm{Z}_{\mathrm{M}}=\mathrm{Z}_{\mathrm{N}}\)
(D) \(\mathrm{Z}_{\mathrm{M}}=0.333 \mathrm{Z}_{\mathrm{N}}\)
GATE - 2017

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.177. Water is heated at atmospheric pressure from \(40^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) using two different processes. In process I, the heating is done by a source at \(80^{\circ} \mathrm{C}\). In process II, the water is first heated from \(40^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) by a source at \(60^{\circ} \mathrm{C}\) and then from \(60^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) by another source at \(80^{\circ} \mathrm{C}\). Identify the correct statement.
(A) Enthalpy change of water in process I is greater than enthalpy change in process II.
(B) Enthalpy change of water in process II is greater than enthalpy change in process I.
(C) Process I is closer to reversibility
(D) Process II is closer to reversibility
Q.178. The pressure of a liquid is increased isothermally. The molar volume of the liquid decreases from \(50.45 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\) to \(48 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\) during this process. The isothermal compressibility of the liquid is \(10^{-9} \mathrm{~Pa}^{-1}\), which; can be assumed to be independent of pressure. The change in the molar Gibbs free energy of the liquid rounded to nearest integer, is
\(\mathrm{J} / \mathrm{mol}\)
Q.179. A sparingly soluble gas (solute) is in equilibrium with a solvent at 10 bar. The mole fraction of the solvent in the gas phase is 0.01 . At the operating temperature and pressure, the fugacity coefficient of the solute in the gas phase and the Henry's law constant are 0.92 and 1000 bar, respectively. Assume that the liquid phase obeys Henry's law. The MOLE PERCENTAGE of the solute in the liquid phase rounded to 2 decimal places, is \(\qquad\) .

GATE - 2017

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.180. The vapour pressure of a pure substance at a temperature T is 30 bar. The actual and ideal gas values of \(\mathrm{g} / \mathrm{RT}\) for the saturated vapour at this temperature T and 30 bar are 7.0 and 7.7, respectively. Here g is the molar Gibbs free energy; and R is the universal gas constant. The fugacity of the saturated liquid at these conditions, rounded to 1 decimal place, is \(\qquad\) bar.

GATE - 2017

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.181. Consider the following properties
(P) temperature
(Q) specific gravity
(R) chemical potential
(S) volume

The option which lists ALL the intensive properties is
(A) P
(B) P and Q
(C) P, Q and R
(D) P, Q, R and S GATE - \(\mathbf{2 0 1 8}\)

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q.182. G denotes the Gibbs free energy of a binary mixture, \(\mathrm{n}_{\mathrm{T}}\) denotes the total number of moles present in the system, \(\mu_{\mathrm{i}}\) is the chemical potential of the \(\mathrm{i}^{\text {th }}\) component \(\left(\mu_{1} \neq 0\right.\) and \(\mu_{1}>\mu_{2}\) ) and \(x_{i}\) is the mole fraction of the \(i\) component. The correct variation of \(\mathrm{G} / \mathrm{n}_{\mathrm{T}}\) (in \(\mathrm{J} / \mathrm{mol}\) ) at constant temperature and pressure is given by
(A)

(B)

(C) \(G / n_{T}\)

(D)

Q.183. Under isothermal condition, a vertical tube of length \(\mathrm{L}=100 \mathrm{~m}\) contains a gas of molecular weight equal to 60 . The pressure and temperature at the top of the tube are 100 kPa and \(25^{\circ} \mathrm{C}\) respectively. Consider the universal gas constant and acceleration due to gravity as \(8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) and \(9.81 \mathrm{~m} \mathrm{~s}^{-2}\) respectively. If the gas is ideal, the pressure (in kPa ) at the bottom of the tube will be \(\qquad\) (rounded off to third place)
Q. 184. In a closed piston-cylinder system, methane was observed to obey the following equation of state
\[
P(V-n b)=n R T
\]
where \(\mathrm{b}=0.029 \mathrm{~m}^{3} / \mathrm{mol}\). The temperature and volume are \(500^{\circ} \mathrm{C}\) and \(5 \mathrm{~m}^{3}\) respectively for 100 moles of methane. At this state of the system, the isobaric rate of change of temperature with volume (in \({ }^{\circ} \mathrm{C} / \mathrm{m}^{3}\) ) is \(\qquad\) (rounded off to second decimal place).
Q. 185.

Consider a rigid, perfectly insulated, container partitioned into two unequal parts by a thin membrane (see figure). One part contains one mole of an ideal gas at pressure \(P_{i}\) and temperature \(T_{i}\) while the other part is evacuated. The membrane ruptures, the gas fills the entire volume and the equilibrium pressure is \(P_{f}=P_{i} / 4\). If \(C_{p}\) (molar specific heat capacity at constant pressure), \(C_{v}\) (molar specific heat capacity at constant volume) and \(R\) (universal gas constant) have the same units as molar entropy, the change in molar entropy \(\left(S_{f}-S_{i}\right)\) is

(A) \(C_{p} \ln 2+R \ln 4\)
(B) \(-C_{v} \ln 2+R \ln 4\)
(C) \(R \ln 4\)
(D) \(C_{p} \ln 2\)
Q. 186.

For a single component system, vapor (subscript \(g\) ) and liquid (subscript \(f\) ) coexist in mechanical, thermal and phase equilibrium when
(A) \(u_{g}=u_{f}\) (equality of specific internal energy)
(B) \(h_{g}=h_{f}\) (equality of specific enthalpy)
(C) \(s_{g}=s_{f}\) (equality of specific entropy)
(D) \(g_{g}=g_{f}\) (equality of specific Gibbs free energy)
Q. 187.

For a binary nonideal A-B mixture exhibiting a minimum boiling azeotrope, the activity coefficients, \(\gamma_{i}(i=\mathrm{A}, \mathrm{B})\), must satisfy
(A) \(\gamma_{A}>1, \gamma_{B}>1\)
(B) \(\gamma_{A}<1, \gamma_{B}>1\)
(C) \(\gamma_{A}=1, \gamma_{B}=1\)
(D) \(\gamma_{A}<1, \gamma_{B}<1\)
Q. 188.

Consider a sealed rigid bottle containing \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) at 10 bar and ambient temperature. Assume that the gas phase in the bottle is pure \(\mathrm{CO}_{2}\) and follows the ideal gas law. The liquid phase in the bottle contains \(\mathrm{CO}_{2}\) dissolved in \(\mathrm{H}_{2} \mathrm{O}\) and is an ideal solution. The Henry's constant at the system pressure and temperature is \(\mathcal{H}_{\mathrm{CO}_{2}}=1000\) bar. The equilibrium mole fraction of \(\mathrm{CO}_{2}\) dissolved in \(\mathrm{H}_{2} \mathrm{O}\) is \(\qquad\) (rounded off to three decimal places).
Q. 189.

Carbon monoxide (CO) reacts with hydrogen sulphide \(\left(\mathrm{H}_{2} \mathrm{~S}\right)\) at a constant temperature of 800 K and a constant pressure of 2 bar as:
\[
\mathrm{CO}+\mathrm{H}_{2} \mathrm{~S} \leftrightharpoons \mathrm{COS}+\mathrm{H}_{2}
\]

The Gibbs free energy of the reaction \(\Delta g^{\circ}{ }_{r x n}=22972.3 \mathrm{~J} / \mathrm{mol}\) and universal gas constant \(R=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})\). Both the reactants and products can be assumed to be ideal gases. If initially only 4 mol of \(\mathrm{H}_{2} \mathrm{~S}\) and 1 mol of CO are present, the extent of the reaction (in mol) at equilibrium is \(\qquad\) (rounded off to two decimal places).

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q. 190.

For a given binary system at constant temperature and pressure, the molar volume (in \(\left.\mathrm{m}^{3} / \mathrm{mol}\right)\) is given by: \(v=30 x_{A}+20 x_{B}+x_{A} x_{B}\left(15 x_{A}-7 x_{B}\right)\), where \(x_{A}\) and \(x_{B}\) are the mole fractions of components A and B , respectively. The volume change of mixing \(\Delta \nu_{\text {mix }}\) (in \(\left.\mathrm{m}^{3} / \mathrm{mol}\right)\) at \(x_{A}=0.5\) is \(\qquad\) (rounded off to one decimal place).
Q. 191.

Consider a vessel containing steam at \(180^{\circ} \mathrm{C}\). The initial steam quality is 0.5 and the initial volume of the vessel is \(1 \mathrm{~m}^{3}\). The vessel loses heat at a constant rate \(\dot{q}\) under isobaric conditions so that the quality of steam reduces to 0.1 after 10 hours. The thermodynamic properties of water at \(180^{\circ} \mathrm{C}\) are (subscript \(g\) : vapor phase; subscript \(f\) : liquid phase):
specific volume:
specific internal energy:
specific enthalpy:
\[
\begin{array}{ll}
v_{g}=0.19405 \mathrm{~m}^{3} / \mathrm{kg}, & v_{f}=0.001127 \mathrm{~m}^{3} / \mathrm{kg} ; \\
u_{g}=2583.7 \mathrm{~kJ} / \mathrm{kg}, & u_{f}=762.08 \mathrm{~kJ} / \mathrm{kg} ; \\
h_{g}=2778.2 \mathrm{~kJ} / \mathrm{kg}, & h_{f}=763.21 \mathrm{~kJ} / \mathrm{kg} .
\end{array}
\]

The rate of heat loss \(\dot{q}\) (in \(\mathrm{kJ} /\) hour) is \(\qquad\) (rounded off to the nearest integer).

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription

\section*{Q. 192.}

A fractionator recovers \(95 \mathrm{~mol} \% n\)-propane as the distillate from an equimolar mixture of \(n\)-propane and \(n\)-butane. The condensate is a saturated liquid at \(55^{\circ} \mathrm{C}\). The Antoine equation is of the form, \(\ln \left(P^{\text {sat }}[\right.\) in bar \(\left.]\right)=A-\frac{B}{T[\mathrm{in} \mathrm{K}]+C}\), and the constants are provided below:
\begin{tabular}{|l|c|c|c|}
\hline & \(A\) & \(B\) & \(C\) \\
\hline\(n\)-propane & 9.1058 & 1872.46 & -25.16 \\
\hline\(n\)-butane & 9.0580 & 2154.90 & -34.42 \\
\hline
\end{tabular}

Assuming Raoult's law, the condenser pressure (in bar) is \(\qquad\) (rounded off to one decimal place).

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q. 193. Mole fraction and activity coefficient of component 1 in a binary liquid mixture are \(\mathrm{x}_{1}\) and \(\gamma_{1}\) respectively. \(\mathrm{G}^{\mathrm{E}}\) is excess molar Gibbs energy of the mixture. R is universal gas constant and T is absolute temperature of the mixture. Which one of the following is always true?
(A) \(\lim _{x_{1} \rightarrow 1} \frac{G^{E}}{R T}=0\)
(B) \(\lim _{x_{1} \rightarrow 1} \frac{G^{E}}{R T}=0.5\)
(C) \(\lim _{x_{1} \rightarrow 1} \gamma_{1}=0\)
(C) \(\lim _{x_{1} \rightarrow 1} \gamma_{1}=0.5\)
Q. 194. Consider two Carnot engines \(\mathbf{C}_{1}\) and \(\mathbf{C}_{2}\) as shown in the figure.


The efficiencies of the engines \(\mathbf{C}_{1}\) and \(\mathbf{C}_{2}\) are 0.40 and 0.35 , respectively. If the temperature of Reservoir R1 is 800 K , then the temperature (in K ) of Reservoir R3
is \(\qquad\) (round off to nearest integer).

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription

\section*{Created By: Devendra Poonia Sir}

\section*{Q. 195.}

A pure gas obeys the equation of state given by
\[
\frac{P V}{R T}=1+\frac{B P}{R T}
\]
where \(P\) is the pressure, \(T\) is the absolute temperature, \(V\) is the molar volume of the gas, \(R\) is the universal gas constant, and \(B\) is a parameter independent of \(T\) and \(P\). The residual molar Gibbs energy, \(G^{R}\), of the gas is given by the relation
\[
\frac{G^{R}}{R T}=\int_{0}^{P}(Z-1) \frac{d P}{P}
\]
where \(Z\) is the compressibility factor and the integral is evaluated at constant \(T\). If the value of \(B\) is \(1 \times 10^{-4} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\), the residual molar enthalpy (in \(\mathrm{J} \mathrm{mol}^{-1}\) ) of the gas at 1000 kPa and 300 K is
(A) 100
(B) 300
(C) 2494
(D) 30000

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription

\section*{Created By: Devendra Poonia Sir}
Q. 196.

Consider one mole of an ideal gas in a closed system. It undergoes a change in state from \(\mathbf{L}\) to \(\mathbf{N}\) through two different non-isothermal processes, as shown in the \(P-V\) diagram (where \(P\) is the pressure and \(V\) is the molar volume of the gas). Process I is carried out in a single step, namely \(\mathbf{L N}\), whereas process II is carried out in two steps, namely \(\mathbf{L M}\) and \(\mathbf{M N}\). All the steps are reversible.


The net heat flowing into the system for process I is \(Q_{1}\) and that for process II is \(Q_{\mathrm{II}}\). The value of \(Q_{1}-Q_{\mathrm{II}}\) (in J) is
250
(B) 500
C) 1000
(D) 1500

Use code DP07 to get maximum discount on Unacademy PLUS and ICONIC subscription
Q. 197. The van der Waals equation of state is given by
\[
P_{r}=\frac{8 T_{r}}{3 v_{r}-1}-\frac{3}{v_{r}^{2}}
\]
where \(P_{r}, T_{r}\) and \(v_{r}\) represent reduced pressure, reduced temperature and reduced molar volume, respectively. The compressibility factor at critical point \(\left(\mathrm{z}_{\mathrm{c}}\right)\) is \(3 / 8\).

If \(v_{r}=3\) and \(T_{r}=4 / 3\), then the compressibility factor based on the van der Waals equation of state is \(\qquad\) (round off to 2 decimal places).
Q.198. The molar heat capacity at constant pressure \(C_{p}\left(\mathrm{in} \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)\) for n-pentane as a function of temperature ( T in K ) is given by
\[
\frac{C_{p}}{R}=2.46+45.4 \times 10^{-3} T-14.1 \times 10^{-6} T^{2}
\]

Take \(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\).

At 1000 K , the rate of change of molar entropy of n-pentane with respect to temperature at constant pressure is __ \(\mathrm{J}^{-1} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}\) (round off to 2 decimal places).
Q.199. The combustion of carbon monoxide is carried out in a closed, rigid and insulated vessel. 1 mol of \(\mathrm{CO}, 0.5 \mathrm{~mol}\) of \(\mathrm{O}_{2}\) and 2 mol of \(\mathrm{N}_{2}\) are taken initially at 1 bar and 298 K , and the combustion is carried out to completion.

The standard molar internal energy change of reaction \(\left(\Delta u^{0}{ }_{R}\right)\) for the combustion of carbon monoxide at \(298 \mathrm{~K}=-282 \mathrm{~kJ} \mathrm{~mol}^{-1}\). At constant pressure, the molar heat capacities of \(\mathrm{N}_{2}\) and \(\mathrm{CO}_{2}\) are \(33.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\) and \(58.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), respectively. Assume the heat capacities to be independent of temperature, and the gases are ideal. Take \(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\).

The final pressure in the vessel at the completion of the reaction is bar (round off to 1 decimal place).
Q.200. A gaseous mixture at 1 bar and 300 K consists of \(20 \mathrm{~mol} \% \mathrm{CO}_{2}\) and \(80 \mathrm{~mol} \%\) inert gas.

Assume the gases to be ideal. Take \(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\)
The magnitude of minimum work required to separate 100 mol of this mixture at 1 bar and 300 K into pure \(\mathrm{CO}_{2}\) and inert gas at the same temperature and pressure is
\(\qquad\) kJ (round off to nearest integer).
Q.201. A binary liquid mixture consists of two species 1 and 2. Let \(\gamma\) and \(x\) represent the activity coefficient and the mole fraction of the species, respectively. Using a molar excess Gibbs free energy model, In \(\gamma_{1}\) vs. \(x_{1}\) and In \(\gamma_{2}\) vs. \(x_{1}\) are plotted. A tangent drawn to the \(\ln \gamma_{1}\) vs. \(x_{1}\) curve at a mole fraction of \(x_{1}=0.2\) has a slope \(=-1.728\).

The slope of the tangent drawn to the In \(\gamma_{2}\) vs. \(\mathrm{x}_{1}\) curve at the same mole fraction is
\(\qquad\) (correct to 3 decimal places).
Q.202. The following homogeneous liquid phase reactions are at equilibrium.


The values of rate constants are given by:
\(\mathrm{k}_{1}=0.1 \mathrm{~s}^{-1}, \mathrm{k}_{-1}=0.2 \mathrm{~s}^{-1}, \mathrm{k}_{2}=1 \mathrm{~s}^{-1}, \mathrm{k}_{-2}=10 \mathrm{~s}^{-1}, \mathrm{k}_{3}=10 \mathrm{~s}^{-1}\).
The value of rate constant \(\mathrm{k}_{-3}\) is \(\qquad\) \(\mathrm{s}^{-1}\) (round off to 1 decimal place).
Q.203. For a single component system at vapor-liquid equilibrium, the extensive variables \(A, V, S\) and \(N\) denote the Helmholtz free energy, volume, entropy, and number of moles, respectively, in a given phase. If superscripts \((v)\) and \((l)\) denote the vapor and liquid phase, respectively, the relation that is NOT CORRECT is
(A) \(\left(\frac{\partial A^{(l)}}{\partial V^{(l)}}\right)_{T, N^{(l)}}=\left(\frac{\partial A^{(v)}}{\partial V^{(v)}}\right)_{T, N^{(v)}}\)
(C)
\[
\left(\frac{A+P V}{N}\right)^{(l)}=\left(\frac{A+P V}{N}\right)^{(v)}
\]
(B) \(\quad\left(\frac{\partial A^{(l)}}{\partial N^{(l)}}\right)_{T, V^{(l)}}=\left(\frac{\partial A^{(v)}}{\partial N^{(v)}}\right)_{T, V^{(v)}}\)
(D) \(\quad\left(\frac{A+T S}{N}\right)^{(l)}=\left(\frac{A+T S}{N}\right)^{(v)}\)
Q.204. 5 moles of liquid benzene, 8 moles of liquid toluene and 7 moles of liquid xylene are mixed at \(25^{\circ} \mathrm{C}\) and 1 bar . Assuming the formation of an ideal solution and using the universal gas constant \(R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\), the total entropy change is ___ \(\mathrm{J} \mathrm{K}^{-1}\) (rounded off to one decimal place).
Q.205. \(N\) moles of an ideal gas undergo a two-step process as shown in the figure. Let \(P\), \(V\) and \(T\) denote the pressure, volume and temperature of the gas, respectively. The gas, initially at state-1 \(\left(P_{1}, V_{1}, T_{1}\right)\), undergoes an isochoric (constant volume) process to reach state-A, and then undergoes an isobaric (constant pressure) expansion to reach state-2 ( \(P_{1}\), \(V_{1}, T_{1}\) ). For an ideal gas, \(C_{\mathrm{P}}-C_{\mathrm{v}}=N R\), where \(C_{\mathrm{p}}\) and \(C_{\mathrm{v}}\) are the heat capacities at constant pressure and constant volume, respectively, and assumed to be temperature independent. The heat gained by the gas in the two-step process is given by

(A)
\[
P_{2}\left(V_{2}-V_{1}\right)+C_{V}\left(T_{2}-T_{1}\right)
\]
(B) \(\quad P_{2}\left(V_{2}-V_{1}\right)+C_{P}\left(T_{2}-T_{1}\right)\)
(C) \(\quad C_{P}\left(T_{2}-T_{1}\right)+C_{V}\left(T_{2}-T_{1}\right)\)
(D) \(\quad P_{2} V_{2}-P_{1} V_{1}\)
Q.206. A substance at \(4{ }^{\circ} \mathrm{C}\) has a thermal expansion coefficient \(\beta=\frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{P}=0 \mathrm{~K}^{-1}\) an isothermal compressibility, \(\kappa_{T}=-\frac{1}{v}\left(\frac{\partial v}{\partial P}\right)_{T}=5 \times 10^{-4} \mathrm{~Pa}^{-1}\)
and a molar volume \(v=18 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\).
If \(s\) is the molar entropy, then at \(4{ }^{\circ} \mathrm{C}\), the quantity \(\left[v\left(\frac{\partial s}{\partial v}\right)_{T}\right]\) evaluated for the substance is \(\ldots \mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\)
(rounded off to the nearest integer).
Q.207. The molar excess Gibbs free energy ( \(g^{\mathrm{E}}\) ) of a liquid mixture of A and B is given by
\[
\frac{g^{E}}{R T}=x_{A} x_{B}\left[C_{1}+C_{2}\left(x_{A}-x_{B}\right)\right]
\]
where \(x_{\mathrm{A}}\) and \(x_{\mathrm{B}}\) are the mole fraction of A and B , respectively, the universal gas constant, \(R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, T\) is the temperature in K , and \(C_{1}, C_{2}\) are temperature-dependent parameters. At \(300 \mathrm{~K}, C_{1}=0.45\) and \(C_{2}=-0.018\). If \(\gamma_{\mathrm{A}}\) and \(\gamma_{\mathrm{B}}\) are the activity coefficients of \(A\) and \(B\), respectively, the value of
\[
\int_{0}^{1} \ln \left(\frac{\gamma_{A}}{\gamma_{B}}\right) d x_{A}
\]
at 300 K and 1 bar is \(\qquad\) (rounded off to the nearest integer).
Q.208. For a pure substance, the following data at saturated conditions are given:
\begin{tabular}{cc}
\(\ln P^{\text {sat }}\) (bar) & \(T(\mathrm{~K})\) \\
0.693 & 350 \\
1.386 & 370
\end{tabular}

Assume that the vapor phase behaves ideally, the molar volume of the liquid is negligible, and the latent heat of vaporization is constant over the given temperature range. The universal gas constant, \(R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\). From the above data, the estimated latent heat of vaporization at 360 K is \(\qquad\) \(\mathrm{kJ} / \mathrm{mol}\) (rounded off to one decimal place).
Q.209. John and Jane independently performed a thermodynamic experiment, in which \(\mathbf{X}\) and \(\mathbf{Y}\) represent the initial and final thermodynamic states of the system, respectively. John performed the experiment under reversible conditions, for which the change in entropy of the system was \(\boldsymbol{\Delta} \boldsymbol{S}_{\text {rev }}\). Jane performed the experiment under irreversible conditions, for which the change in entropy of the system was \(\boldsymbol{\Delta} \boldsymbol{S}_{i r r}\).

Which one of the following relationships is CORRECT?
(A) \(\Delta \boldsymbol{S}_{r e v}=\Delta \boldsymbol{S}_{i r r}\)
(B) \(\Delta S_{r e v}>\Delta S_{i r r}\)
(C) \(\Delta S_{r e v}<\Delta S_{i r r}\)
(D) \(\Delta S_{r e v}=\mathbf{2} \Delta S_{i r r}\)
Q.210. The enthalpy ( \(H\), in J. mol \(^{-1}\) ) of a binary liquid system at constant temperature and pressure is given as
\[
H=40 x_{1}+60 x_{2}+x_{1} x_{2}\left(4 x_{1}+2 x_{2}\right)
\]
where \(x_{1}\) and \(x_{2}\) represent the mole fractions of species 1 and 2 in the liquid, respectively. Which one of the following is the CORRECT value of the partial molar enthalpy of species 1 at infinite dilution, \(H_{1}^{\infty}\) (in J. mol \({ }^{-1}\) ) ?
(A) 100
(B) 42
(C) 64
(D) 40

THERMODYNAMICS
Answer Key
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Que. No. & Answer & Que. No. & Answer & Que. No. & Answer & Que. No. & Answer \\
\hline 1. & subjective & 14. & A & 27. & C & 40. & C \\
\hline 2. & subjective & 15. & C & 28. & C & 41. & A \\
\hline 3. & \(0.693 R T\) & 16. & B & 29. & D & 42. & C \\
\hline 4. & subjective & 17. & 500 kJ & 30. & B & 43. & A \\
\hline 5. & subjective & 18. & False & 31. & 2.052 & 44. & 902.49 mm \\
\hline 6. & A & 19. & 360.39 & 32. & A & 45. & 0.0855 \\
\hline 7. & A & 20. & D & 33. & B & 46. & Subjective \\
\hline 8. & D & 21. & C & 34. & B & 47. & C \\
\hline 9. & D & 22. & subjective & 35. & D & 48. & A \\
\hline 10. & A & 23. & F,F,F, F & 36. & 192.94 mm & 49. & A \\
\hline 11. & 0.408 & 24. & B,D & 37. & 42139.2 kJ & 50. & C \\
\hline 12. & Subjective & 25. & A,B & 38. & subjective & 51. & B \\
\hline 13. & Subjective & 26. & subjective & 39. & D & 52. & 0.925 \\
\hline
\end{tabular}

THERMODYNAMICS
Answer Key
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Que. No. & Answer & Que. No. & Answer & Que. No. & Answer & Que. No. & Answer \\
\hline 53. & 2025 & 66. & Subjective & 79. & B & 92. & B, C \\
\hline 54. & C & 67. & C & 80. & 56.94 kPa & 93. & D \\
\hline 55. & A & 68. & B & 81. & \(2.37,6397.5\) & 94. & B \\
\hline 56. & B & 69. & D & 82. & C & 95. & C \\
\hline 57. & D & 70. & A & 83. & A & 96. & B \\
\hline 58. & B & 71. & A & 84. & D & 97. & B \\
\hline 59. & Subjective & 72. & Subjective & 85. & B & 98. & D \\
\hline 60. & A & 73. & \(0.676,0.1\) & 86. & B & 99. & A \\
\hline 61. & B & 74. & A & 87. & B & 100. & D \\
\hline 62. & C & 75. & B & 88. & C & 101. & C \\
\hline 63. & C & 76. & A & 89. & D & 102. & A \\
\hline 64. & A & 77. & D & 90. & C & 103. & C \\
\hline 65. & 0.4385 & 78. & B & 91. & A & 104. & D \\
\hline
\end{tabular}

THERMODYNAMICS
Answer Key
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Que. No. & Answer & Que. No. & Answer & Que. No. & Answer & Que. No. & Answer \\
\hline 105. & B & 118. & A & 131 & A & 144 & B \\
\hline 106. & A & 119. & D & 132 & B & 145 & C \\
\hline 107. & B, D & 120 & A & 133 & B & 146 & C \\
\hline 108. & A & 121 & B & 134 & B , C & 147 & B \\
\hline 109. & B & 122 & A & 135 & D & 148 & A \\
\hline 110. & B & 123 & C & 136 & C & 149 & A \\
\hline 111. & D & 124 & C, D & 137 & D & 150 & D \\
\hline 112. & C & 125 & A & 138 & D & 151 & A \\
\hline 113. & C & 126 & B & 139 & C & 152 & D \\
\hline 114. & B & 127 & C & 140 & C & 153 & 3 \\
\hline 115. & B & 128 & C, D & 141 & A & 154 & C \\
\hline 116. & A & 129 & C & 142 & B & 155 & D \\
\hline 117. & B & 130 & D & 143 & C & 156 & B \\
\hline
\end{tabular}

THERMODYNAMICS
Answer Key
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Que. No. & Answer & Que. No. & Answer & Que. No. & Answer & Que. No. & Answer \\
\hline 157. & D & 170. & D & 183. & 102.3 KPa & 196. & B \\
\hline 158. & 0.073 & 171. & 27.548 bar & 184. & 368 & 197. & 0.83 \\
\hline 159. & 21.7 kJ & 172. & \(-58 \mathrm{~kJ} / \mathrm{mol}\) & 185. & C & 198. & 0.27 \\
\hline 160. & B & 173. & 373 k & 186. & D & 199. & 8.9 \\
\hline 161. & D & 174. & \(400 \mathrm{~J} / \mathrm{mol}\) & 187. & A & 200. & 124 \\
\hline 162. & C & 175. & 1.647 & 188. & 0.01 & 201. & 0.432 \\
\hline 163. & D & 176. & C & 189. & 0.288 & 202. & 0.5 \\
\hline 164. & 0.6978 & 177. & D & 190. & \(1 \mathrm{~m}^{3}\) & 203. & D \\
\hline 165. & 310 K & 178. & 2450 & 191. & \(825.9 \mathrm{~kJ} / \mathrm{h}\) & 204. & 178.7 to 180.7 \\
\hline 166. & D & 179. & 0.91 & 192. & 18 bar & 205. & A \\
\hline 167. & D & 180. & 14.8 kPa & 193. & A & 206. & 0 to 0 \\
\hline 168. & A & 181. & C & 194. & 312 K & 207. & 0 to 0 \\
\hline 169. & -756.9 kJ & 182. & C & 195. & A & 208. & 36.3 to 38.3 \\
\hline
\end{tabular}

\section*{THERMODYNAMICS}

Answer Key
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Que. No. & Answer & Que. No. & Answer & Que. No. & Answer & Que. No. & Answer \\
\hline 209. & A & & & & & & \\
\hline 210. & B & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Thank you```

