B.E / B.Tech (Full Time) Degree End Semester Examinations - April / May 2014 Electronic and Communication Engineering Branch IV Semester B.E (ECE)
MA8401 Linear Algebra and Numerical Methods
(Regulation 2012)
Duration: 3 Hours
Total marks $=100$
Part A

1. Is the set of all points on the line $x+y=1$ in the $x y$-plane, a vector subspace of $\mathbb{R}^{2}$ with respect to usual vector addition and scalar multiplication?
2. What is the linear span $L(S)$ of the set $S=\left\{\bar{e}_{1}, \bar{e}_{2},\left(\bar{e}_{1}+\bar{e}_{2}\right) / 2\right\}$ where $\bar{e}_{1}=(1,0,0)$ and $\bar{e}_{2}=(0,1,0)$ are elements in $\mathbb{R}^{3}$ ?
3. Write down the matrix form of the linear transformation that is described by a rotation about an angle $\theta$ in the counter clockwise direction in $x y$-plane.
4. State TRUE or FALSE with proper justification: "Linearly independent vectors are always orthogonal in an inner product space".
5. Prove that orthogonal complement of any set $S$ of an inner product space $V$ is a subspace of $V$.
6. Show that similar matrices have same eigenvalues.
7. Construct a LU decomposition of the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
8. Explain row pivoting in connection with Gauss Elimination Method.
9. Define generalized inverse for a non-square matrix.
10. Show that singular values for a symmetric matrix coincide with its eigenvalues.

## Part B

11..(i) Solve the following system by Gauss elimination method:

$$
\begin{aligned}
2 x+y+z & =10 \\
3 x+2 y+2 z & =18 \\
x+4 y+9 z & =16 .
\end{aligned}
$$

(ii) Write down the Gauss-Seidel iteration scheme for the following system. Then solve the system by the same method for three iterations starting with the initial vector $(0,0,0)^{T}$.

$$
\begin{aligned}
20 x+y-2 z & =17 \\
3 x+20 y-z & =-18 \\
2 x-3 y+20 z & =25 .
\end{aligned}
$$

12.a(i) Let $V$ be the set of of all $2 X 2$ matrices with real entries. Show that $V$ is a vector space over $\mathbb{R}$ with respect to usual matrix addition done entry wise and usual scalar multiplication done entry wise. Verify all the conditions of a vector space.
(8 Marks)
(ii) Let $\mathcal{B}=\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}\right\}$ be a subset of a vector space $V$. Then $\mathcal{B}$ is a basis if and only if each $\bar{v} \in V$ can uniquely be expressed as a linear combination of vectors of $\mathcal{B}$.
(8 Marks)
(OR)
12.b(i) Determine whether or not the set $\mathcal{S}=\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$ forms a basis for $\mathbb{P}_{2}(\mathbb{R})$.
(8 Marks)
(ii) Prove that the linear span $L(S)$ of a subset $S$ of a vector space $(V,+,$.$) over \mathbb{R}$ is a vector subspace of $V$. Further, show that $L(S)$ is the smallest subspace that contains $S$. (8 Marks)
13.a(i) Using Gram-Schmidt orthogonalization process construct an orthogonal set from the given set $S=\{(1,0,1),(0,1,1),(1,3,3)\}$ of $\mathbb{R}^{3}$. Also find the Fourier coefficient of the vector $(1,1,2)$ with respect to the resultant orthogonal vectors.
(8 Marks)
(ii) Let $T: \mathbb{P}_{2}(\mathbb{R}) \rightarrow \mathbb{P}_{3}(\mathbb{R})$ be defined by

$$
T(f(x))=2 f^{\prime}(x)+\int_{0}^{x} 3 f(t) d t
$$

Find bases for $N(T)$ and $R(T)$ and hence verify the dimension theorem. Is $T$ one-to-one? Is $T$ onto? Justify your answer.
(8 Marks)
13.b(i) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y)=(2 x-y, 3 x+4 y, x)$. Compute the matrix of the transformation with respect to the standard bases of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$. Find $N(T)$ and $R(T)$. Is $T$ one-to-one, onto? Justify your answer.
(8 Marks)
(ii) Let $V$ and $W$ be vector spaces and let $T: V \rightarrow W$ be a linear transformation. If $V$ is finite-dimensional then prove that

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dimension}(V) .
$$

(8 Marks)
14.a(i) For the linear operator $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined as $T(f(x))=f(x)+x f^{\prime}(x)+f^{\prime \prime}(x)$, find the eigenvalues of $T$ and an ordered basis $\mathcal{B}$ for $P_{2}(\mathbb{R})$ such that the matrix of the given transformation with respect to the new resultant basis $\mathcal{B}$ is a diagonal matrix. (8 Marks)
(ii) Using Least square approximation determine the best linear fit for the data: $\{(1,2),(2,3),(3,5),(4,7)\}$.
(8 Marks)

> (OR)
14.b(i) Solve the system of differential equations using diagonalization and discuss its stability:

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)+4 y(t) \\
y^{\prime}(t) & =x(t)+2 y(t) .
\end{aligned}
$$

(ii) Let $V$ be an inner product space over $\mathbb{R}$. For all $\bar{x}, \bar{y} \in V$ prove the following:
(1) Cauchy-Schwarz inequality $|<\bar{x}, \bar{y}>| \leq\|\bar{x}\|\|\bar{y}\|$ and
(2) Triangle inequality $\|\bar{x}+\bar{y}\| \leq\|\bar{x}\|+\|\bar{y}\|$.
15.a(i) Obtain by power method the numerically largest eigenvalue and its corresponding eigenvector for the matrix $A=\left(\begin{array}{lll}2 & 1 & 3 \\ 1 & 4 & 2 \\ 3 & 2 & 3\end{array}\right)$ starting with the vector $(1,1,0)^{T}$ for three iterations.
(ii) Construct a QR decomposition for the matrix $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{array}\right)$.
15.b(i) Using the Jacobi rotation method, find all the eigenvalues and the corresponding eigenvectors of the matrix $A=\left(\begin{array}{rrr}2 & \sqrt{2} & 4 \\ \sqrt{2} & 6 & \sqrt{2} \\ 4 & \sqrt{2} & 2\end{array}\right)$.
(ii) Construct a singular value decomposition for the matrix $A=\left(\begin{array}{rr}1 & 1 \\ 1 & -1 \\ -1 & -1\end{array}\right)$.

