Roll No

BE - 104

B.E. I & II Semester Examination, December 2014

Basic Electrical & Electronics Engineering

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

- ii) All parts of each questions are to be attempted at one place.
- iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) Write the major difference between:
 - i) Ideal voltage source and practical voltage source
 - ii) Dependent and independent sources.
 - b) Define:
 - i) Impedance and
 - ii) Phase sequence in a.c. circuit.
 - c) Explain with units and
 - i) Real power
 - ii) Reactive power
 - iii) Apparent power in a.c. circuit.
 - d) Derive the relation for conversion for star and delta connection.

Or

State Thevenin's theorem. Determine the current through a 3Ω resistor branch in the circuit using Thevenin's theorem.

Unit - II

- 2. a) Define magnetic leakage and fringing.
 - b) Give the reason of eddy current loss in transformer core.
 - c) Define voltage regulation and efficiency of a transformer. Give the formula also.
 - d) Draw the complete phasor diagram of a single phase transformer for an inductive load. Also write the notations used for all voltages and currents used in the phasor diagram.

BE-104

Or

The results of tests performed on 1φ, 20 KVA, 2200/220 volt, 50 Hz. Transformer are as follows-

O.C. test: 220 V, 4.2 A, 148 W S.C. test: 86 V, 10.5 A, 360 W.

Determine:

The regulation and efficiency at 0.8 p.f. lagging at full load.

Unit - III

- 3. a) Write the necessity and material used for the following in a d.c. machine
 - i) Commutator
 - ii) Brush
 - b) Why synchronous machine is called as synchronous. Define synchronous speed.
 - c) Classify self excited D.C. motor.
 - d) Derive the e.m.f. equation of a 3 phase Induction Motor.

 O_1

Draw and explain the complete Torque-slip characteristics of 3 phase induction motor.

Unit - IV

- 4. a) State and explain De Morgan's theorem.
 - b) Simplify the Boolean function $Z = AB + \overline{AC} + BC$ and therefore design the logic circuit using AND or OR logic gates.
 - c) Explain half adder and full adder with truth table.
 - d) Explain number systems used in digital electronics.

Or

Explain in detail J-K flip flop.

Unit - V

- 5. a) Define ideal diode and practical diode.
 - b) Differentiate between conductor, semiconductor and insulator with example.
 - c) Draw and explain the V-I, characteristic of diode.
 - d) Draw the connection diagram and explain the use and working of CE transistor configuration.

 Ω 1

Explain the working of BJT. Discuss DC biasing of BJT.
