	Utech
Name:	
Roll No.:	To Orange (19 Knowledge 2nd Explana)
Invigilator's Signature :	

CS/B.TECH (CSE/OLD)/SEM-4/CS-401/2013 2013

FORMAL LANGUAGE & AUTOMATA THEORY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

$$10 \times 1 = 10$$

i) The following grammar

$$G = (N, T, P, S)$$

$$N = \{ S, A, B \}$$

$$T = \{ a, b, c \}$$

$$P: S \rightarrow aSa$$

$$S \rightarrow aAa$$

$$A \rightarrow bB$$

$$B \rightarrow bB$$

$$B \rightarrow c$$

- a) is type 3
- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1.

4001 (O) [Turn over

CS/B.TECH (CSE/OLD)/SEM-4/CS-401/2013

$$L = \left\{ a^n b^n c^n d^n \mid n \ge 1 \right\}$$

Lis

- a) CFL but not regular
- b) CSL but not CFL
- c) regular
- d) type 0 language but not type 1.
- iii) Can a DFSA simulate a NFSA?
 - a) No

- b) Yes
- c) Sometimes
- d) Depends on NFA.
- iv) The following grammar

$$G = (N, T, P, S)$$

$$N = \{ S, A, B, C, D, E \}$$

$$T = \{ a, b, c \}$$

$$P: S \rightarrow aAB$$

$$AB \rightarrow CD$$

$$G = (N, T, P, S)$$

$$CD \rightarrow CE$$

$$C \rightarrow aC$$

$$C \rightarrow b$$

$$bE \rightarrow bc$$

- a) is type 3
- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1.

v) The following grammar

$$G = (N, T, P, S)$$

$$N = \{ S, A, B, C \}$$

$$T = \{ a, b, c \}$$

$$P: S \rightarrow aS$$

$$A \rightarrow bB$$

$$B \rightarrow cC$$

$$C \rightarrow a$$

- a) is type 3
- b) is type 2 but not type 3
- c) is type 1 but not type 2
- d) is type 0 but not type 1.

vi) Consider the following language:

$$L = \left\{ a^n b^n \mid n \ge 1 \right\}$$

L is

- a) CFL but not regular
- b) CSL but not CFL
- c) regular
- d) type 0 language but no type 1.

vii) The following CFG is in

$$S \rightarrow AB$$

$$B \rightarrow CD$$

$$B \rightarrow AD$$

$$B \rightarrow b$$

$$D \rightarrow AD$$

$$D \rightarrow d$$

$$A \rightarrow a$$

$$C \rightarrow a$$

- a) Chomsky normal form but not strong Chomsky normal form
- b) Weak Chomsky normal form but not Chomsky normal form
- c) Strong Chomsky normal form
- d) Greibach normal form.
- viii) Which of the following CF languages is inherently ambiguous?

a)
$$\left\{a^n b^n c^m d^m \mid n, m \ge 1\right\}$$

b)
$$\{a^n b^m c^p d^q \mid n = p \text{ or } m = q, n, m, p, q \ge 1 \}$$

c)
$$\left\{ a^n b^m c^p d^q \mid n \neq m \mid p \neq q \right\}$$

d)
$$\left\{ a^n b^m c^p d^q \mid n \neq m \lor p \neq q \right\}$$
.

- ix) The concept of FSA is much used in which part of the compiler?
 - a) Lexical analysis
 - b) Parser
 - c) Code generation
 - d) code optimization.
- x) The set of all strings over the alphabet

 $\Sigma = \{ a, b \}$ (including ε) is denoted by

- a) $(a + b)^*$
- b) $(a + b)^+$

c) a^+b^+

- d) a^*b^*
- xi) Which one of the following statements is *False*?
 - a) Context-free languages are closed under union.
 - b) Context-free languages are closed under concatenation.
 - c) Conext-free languages are closed under intersection.
 - d) Context-free languages are closed under Kleene closure.
- xii) Which of the following conversions is not possible (algorithmically)?
 - a) Regular grammar to context-free grammar
 - b) Non-deterministic FSA to deterministic FSA
 - c) Non-deterministic PDA to deterministic PDA
 - d) Non-deterministic M to deterministic TM.

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

2. a) Give an NFA that accepts the language

$$L((a+b)*b(a+bb)*).$$
 2

- b) Design a Moore machine for 1's complement of a given binary number.
- 3. a) Write the regular expression of the language on (0, 1) such that it contains at least one double letter. 2
 - b) Show the left-most derivation tree for the string *aabbbb* with the grammar

$$S \rightarrow AB \mid \lambda$$

$$A \rightarrow aB$$

$$B \rightarrow Sb$$
.

3

4. Test the following machine for definiteness using contracted tables :

	NS		
PS	x = 0	x = 1	
Α	Α	В	
В	E	В	
С	E	F	
D	E	F	
E	Α	D	
F	E	В	

4001 (O)

- 5. What are the closure properties of Regular sets? Explain.
- 6. Write a short note on context sensitive language with suitable example.
- 7. Write about Linear Bounded Automata.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

8. a) Design a Mealy machine which is equivalent to the Moore machine given in the table below: 5

	NS		
PS	<i>i</i> = 0	<i>i</i> = 1	Output
→ q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) Construct a PDA for the language

$$L = \left\{ a^3 b^n c^n : n \ge 0 \right\}.$$

- c) Define linear grammar and regular grammar. 1 + 1
- 9. a) Construct a Turing machine for the language

$$L = \left\{ a^n b^n c^n : n \ge 1 \right\}.$$
 12

b) Show that the language $L = \{a^n : n \ge 0, n \ne 4\}$ is regular.

4001 (O) 7 [Turn over

10. a) Find the equivalence partitions for the machine below.

Also find the standard form of the corresponding reduced machine.

8 + 1

NS, z		
x = 0	x = 1	
E, 0	C, 0	
C, 0	A, 0	
B, 0	G, 0	
G, 0	A, 0	
F, 1	B, 0	
E, 0	D, 0	
D, 0	G, 0	
	x = 0 E, 0 C, 0 B, 0 G, 0 F, 1 E, 0	

b) Remove all unit productions, all useless productions and all λ -productions from the following grammar : 6

$$S \rightarrow aA \mid aBB$$

$$A \rightarrow aaA \mid \lambda$$

$$B \rightarrow bB \mid bbC$$

$$C \rightarrow B$$
.

11. a) Find a Greibach normal form equivalent to the following CFG:

$$S \rightarrow AB/a$$
, $A \rightarrow BS/b$, $B \rightarrow SA/c$

b) Remove all unit productions, all useless productions and all *e*-productions for the following grammar: 7

$$S \rightarrow aA/aBB$$
, $A \rightarrow aaA/e$, $B \rightarrow bB/bbC$, $C \rightarrow B$.

- 12. a) Construct a PDA equivalent to the grammar $S \rightarrow aAA$, $A \rightarrow aS/b$.
 - b) Show that $L = \{ WW/W \in \{ a, b \}^{\#} \}$ is not regular. 8
- 13. Write notes on any three of the following: 3×3
 - a) Myhill-Nreode theorem
 - b) Chomsky Normal form
 - c) Recursively enumerable sets
 - d) DFA and NFA.