

CS/ B.TECH (CSE/ OLD)/ SEM-4/ CS-401/ 2013

 2013 FORMAL LANGUAGE \& AUTOMATA THEORYTime Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) The following grammar

$$
\begin{aligned}
& G=(N, T, P, S) \\
& N=\{S, A, B\} \\
& T=\{a, b, c) \\
& P: S \rightarrow a S a \\
& S \rightarrow a A a \\
& A \rightarrow b B \\
& B \rightarrow b B \\
& B \rightarrow c
\end{aligned}
$$

a) is type 3
b) is type 2 but not type 3
c) is type 1 but not type 2
d) is type 0 but not type 1 .

$$
\begin{aligned}
& L=\left\{a^{n} b^{n} c^{n} d^{n} \mid n \geq 1\right\} \\
& L \text { is }
\end{aligned}
$$

a) CFL but not regular
b) CSL but not CFL
c) regular
d) type 0 language but not type 1 .
iii) Can a DFSA simulate a NFSA ?
a) No
b) Yes
c) Sometimes
d) Depends on NFA.
iv) The following grammar

$$
\begin{aligned}
& G=(N, T, P, S) \\
& N=\{S, A, B, C, D, E\} \\
& T=\{a, b, c\} \\
& P: S \rightarrow a A B \\
& A B \rightarrow C D \\
& G=(N, T, P, S) \\
& C D \rightarrow C E \\
& C \rightarrow a C \\
& C \rightarrow b \\
& b E \rightarrow b c
\end{aligned}
$$

a) is type 3
b) is type 2 but not type 3
c) is type 1 but not type 2
d) is type 0 but not type 1 .
v) The following grammar

$$
\begin{aligned}
& G=(N, T, P, S) \\
& N=\{S, A, B, C\} \\
& T=\{a, b, c\} \\
& P: S \rightarrow a S \\
& A \rightarrow b B \\
& B \rightarrow c C \\
& C \rightarrow a
\end{aligned}
$$

a) is type 3
b) is type 2 but not type 3
c) is type 1 but not type 2
d) is type 0 but not type 1 .
vi) Consider the following language :

$$
L=\left\{a^{n} b^{n} \mid n \geq 1\right\}
$$

L is
a) CFL but not regular
b) CSL but not CFL
c) regular
d) type 0 language but no type 1 .

$$
\begin{aligned}
& S \rightarrow A B \\
& B \rightarrow C D \\
& B \rightarrow A D \\
& B \rightarrow b \\
& D \rightarrow A D \\
& D \rightarrow d \\
& A \rightarrow a \\
& C \rightarrow a
\end{aligned}
$$

a) Chomsky normal form but not strong Chomsky normal form
b) Weak Chomsky normal form but not Chomsky normal form
c) Strong Chomsky normal form
d) Greibach normal form.
viii) Which of the following CF languages is inherently ambiguous?
a) $\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 1\right\}$
b) $\quad\left\{a^{n} b^{m} c^{p} d^{q} \mid n=p\right.$ or $\left.m=q, n, m, p, q \geq 1\right\}$
c) $\quad\left\{a^{n} b^{m} c^{p} d^{q} \mid n \neq m\right.$ A $\left.p \neq q\right\}$
d) $\quad\left\{a^{n} b^{m} c^{p} d^{q} \mid n \neq m \vee p \neq q\right\}$.

ix）The concept of FSA is much used in which part of the compiler？
a）Lexical analysis
b）Parser
c）Code generation
d）code optimization．
x）The set of all strings over the alphabet $\Sigma=\{a, b\}$（including ε ）is denoted by
a）$(a+b)^{\text {米 }}$
b）$(a+b)^{+}$
c）$\quad a^{+} b^{+}$
d）$a^{\text {米 }} b^{\text {米 }}$
xi）Which one of the following statements is False ？
a）Context－free languages are closed under union．
b）Context－free languages are closed under concatenation．
c）Conext－free languages are closed under intersection．
d）Context－free languages are closed under Kleene closure．
xii）Which of the following conversions is not possible （ algorithmically ）？
a）Regular grammar to context－free grammar
b）Non－deterministic FSA to deterministic FSA
c）Non－deterministic PDA to deterministic PDA
d）Non－deterministic M to deterministic TM．

Answer any three of the following.
$3 \times 5=15$
2. a) Give an NFA that accepts the language

$$
\begin{equation*}
L\left((a+b)^{*} b(a+b b)^{*}\right) . \tag{2}
\end{equation*}
$$

b) Design a Moore machine for l's complement of a given binary number.
3. a) Write the regular expression of the language on (0, 1) such that it contains at least one double letter. 2
b) Show the left-most derivation tree for the string $a a b b b b$ with the grammar

$$
\begin{align*}
& S \rightarrow A B \mid \lambda \\
& A \rightarrow a B \\
& B \rightarrow S b . \tag{3}
\end{align*}
$$

4. Test the following machine for definiteness using contracted tables :

$P S$	$N S$	
	$x=0$	$x=1$
A	A	B
B	E	B
C	E	F
D	E	F
E	A	D
F	E	B

4001 (O)
6
5. What are the closure properties of Regular sets? Explain.
6. Write a short note on context sensitive language with suitable example.
7. Write about Linear Bounded Automata.

GROUP - C
 (Long Answer Type Questions)
 Answer any three of the following. $3 \times 15=45$

8. a) Design a Mealy machine which is equivalent to the Moore machine given in the table below :

PS	NS		Output
	$i=0$	$i=1$	
$\rightarrow \mathrm{q} 1$	q 1	q 2	0
q2	q 1	q 3	0
q3	q 1	q 3	1

b) Construct a PDA for the language

$$
L=\left\{a^{3} b^{n} c^{n}: n \geq 0\right\} .
$$

c) Define linear grammar and regular grammar. $1+1$
9. a) Construct a Turing machine for the language

$$
\begin{equation*}
L=\left\{a^{n} b^{n} c^{n}: n \geq 1\right\} . \tag{12}
\end{equation*}
$$

b) Show that the language $L=\left\{a^{n}: n \geq 0, n \neq 4\right\}$ is regular.
10. a) Find the equivalence partitions for the machine below. Also find the standard form of the corresponding reduced machine.

$P S$	$N S, z$	
	$x=0$	$x=1$
A	E, 0	C, 0
B	C, 0	A, 0
C	B, 0	G, 0
D	G, 0	A, 0
E	F, 1	B, 0
F	E, O	D, O
G	D, O	G, O

b) Remove all unit productions, all useless productions and all λ-productions from the following grammar : 6

$$
\begin{aligned}
& S \rightarrow a A \mid a B B \\
& A \rightarrow a a A \mid \lambda \\
& B \rightarrow b B \mid b b C \\
& C \rightarrow B .
\end{aligned}
$$

11. a) Find a Greibach normal form equivalent to the following CFG :

$$
S \rightarrow A B / a, A \rightarrow B S / b, B \rightarrow S A / c
$$

b) Remove all unit productions, all useless productions and all e-productions for the following grammar :

$$
S \rightarrow a A / a B B, A \rightarrow a a A / e, B \rightarrow b B / b b C, C \rightarrow B .
$$

12. a) Construct a PDA equivalent to the grammar $S \rightarrow a A A$, $A \rightarrow a S / b$.
b) Show that $L=\left\{W W \mid W \in\{a, b\}^{*}\right\}$ is not regular. 8
13. Write notes on any three of the following : 3×5
a) Myhill-Nreode theorem
b) Chomsky Normal form
c) Recursively enumerable sets
d) DFA and NFA.
