Con. 7845-13.

$$
\operatorname{sem} \text { III APP.Maths-II / mech (Prod }
$$

N.B.: (1) Question No 1 is Compulsory
(2) Answer any Three from remaining.
(3) Figures to the right indicate marks.

1. (a) Find laplace of $\sin \sqrt{t}$
(b) Show that the set of functions $\operatorname{Sin}\left(\frac{\pi \mathrm{x}}{2 \mathrm{~L}}\right), \operatorname{Sin}\left(\frac{3 \pi \mathrm{x}}{2 \mathrm{~L}}\right), \operatorname{Sin}\left(\frac{5 \pi \mathrm{x}}{2 \mathrm{~L}}\right)$ is orthogonal over 5 (O, L).
(c) Show that $u=\sin x \cos h y+2 \cos x \sin h y+x^{2}-y^{2}+4 x y$ Satisfies laplace equation and find its corresponding analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$.
(d) Determine constants a,b,c,d if $f(z)=x^{2}+2 a x y+b y^{2}+i\left(c x^{2}+2 d x y+y^{2}\right)$ is analytic.
2. (a) Find complex form of fourier series $f(x)=e^{3 x}$ in $0<x<3$.
(b) Using Crank Nicholson Method solve $u_{t}=u_{x x}$ subject to $u(x, 0)=0 u(0, t)=0$ and $\mathrm{u}(1, \mathrm{t})=\mathrm{t}$ for two time steps.
(c) Solve using laplace transforms $\frac{d^{2} y}{\mathrm{dt}^{2}}+y=t, y(0)=1, y^{1}(0)=0$.
3. (a) Find bilinear transformation that maps the points $0,1-\infty$ of the z plane into $-5,-1$, 3 of w plane.
(b) By using Convolution Theorem find inverse laplace transform of $\frac{1}{\left(S^{2}+4 S+13\right)^{2}}$
(c) Find fourier series of $f(x)=x^{2}-\pi \leq x \leq \pi$ and prove that
(i) $\frac{\pi^{2}}{6}=\sum_{1}^{\infty} \frac{1}{n^{2}}$
(ii) $\frac{\pi^{2}}{12}=\sum_{1}^{\infty} \frac{(-1)^{\mathrm{n}+1}}{\mathrm{n}^{2}}$
(iii) $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots$
4. (a) Evaluate $\int_{0}^{\infty} e^{-t} \frac{\sin ^{2} t}{t} d t$
(b) Solve $\frac{\partial^{2} u}{\partial x^{2}}-32 \frac{\partial u}{\partial t}=0$ by

Con. 7845-GX-12025-13. 2

Bender schmidt method subject to conditions $u(0, t)=0 u(x, 0)=0$
$\mathrm{u}(\mathrm{l}, \mathrm{t})=\mathrm{t}$ taking $\mathrm{h}=0.250<x<1$
(c) Obtain two distinct Laurent's Series for $f(z)=\frac{2 z-3}{z^{2}-4 z-3}$ in Powers of $(z-4)$
indicating Region of Convergence.
5. (a) Evaluate $\int_{0}^{1+i} Z^{2} d Z$ along
(i) line $y=x$
(ii) Parabola $x=y^{2}$

Is line independent of path? Explian.
(b) Find half range Cosine Series for $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} 0<x<1$.
(c) Find analytic function
$\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ such that
$u-v=\frac{\operatorname{Cos} x+\operatorname{Sin} x-e^{-y}}{2 \operatorname{Cos} x-e^{y}-e^{-y}}$
when $f(\pi / 2)=0$
6. (a) A tightly streched sting with fixed end points $x=0$ and $x=\ell$ in the shape defined by $y=K x(l-x)$ where K is a Constant is released from this position of rest. Find $y(x, t)$ The vertical displacement
if $\frac{\partial^{2} y}{\partial t^{2}}=C^{2} \frac{\partial^{2} y}{\partial x^{2}}$
(b) Find image of region bounded by $x=0, x=2 y=0 y=2$ in the z plane under the
transformation $w=(1+i) Z$
(c) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{25-16 \cos ^{2} \theta}$

