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UNIT 2 
SYNTAX ANALYSIS 

 
2.1 SYNTAX ANALYSIS 

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and 
generates a syntax tree or parse tree. 
Advantages of grammar for syntactic specification: 

 A grammar gives a precise and easy-to-understand syntactic specification of a 
programming language. 

 An efficient parser can be constructed automatically from a properly designed grammar. 
 A grammar imparts a structure to a source program that is useful for its translation into 

object code and for the detection of errors.  
 New constructs can be added to a language more easily when there is a grammatical 

description of the language. 
2.2 ROLE OF THE PARSER: 

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer 
andverifies that the string can be generated by the grammar for the source language. It reports 
any syntax errors in the program. It also recovers from commonly occurring errors so that it can 
continue processing its input. 

 

 
Fig 2.1 Position of parser in compiler model 

 
The two types of parsers employed are: 
 
1.Top down parser: which build parse trees from top(root) to bottom(leaves) 
2.Bottom up parser: which build parse trees from leaves and work up the root. 
 
Functions of the parser : 

 It verifies the structure generated by the tokens based on the  grammar. 
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 It constructs the parse tree. 
  It reports the errors. 
 It performs error recovery. 

 
Issues : 
Parser cannot detect errors such as: 

 Variable re-declaration 
 Variable initialization before use. 
 Data type mismatch for an operation. 

The above issues are handled by Semantic Analysis phase. 
Syntax error handling: 
Programs can contain errors at many different levels. For example : 

 Lexical, such as misspelling a keyword. 
 Syntactic, such as an arithmetic expression with unbalanced 

parentheses. 
 Semantic, such as an operator applied to an incompatible operand. 
 Logical, such as an infinitely recursive call. 

Functions of error handler: 
 It should report the presence of errors clearly and accurately. 
 It should recover from each error quickly enough to be able to detect 

subsequent errors. 
 It should not significantly slow down the processing of correct programs. 

Error recovery strategies: 
The different strategies that a parse uses to recover from a syntactic error are: 

 Panic mode 
 Phrase level 
 Error productions 
 Global correction 

Panic mode recovery: 
On discovering an error, the parser discards input symbols one at a time until asynchronizing 
token is found. The synchronizing tokens are usually delimiters, such assemicolon or end. It has 
the advantage of simplicity and does not go into an infinite loop. Whenmultiple errors in the 
same statement are rare, this method is quite useful. 
 
Phrase level recovery: 
 On discovering an error, the parser performs local correction on the remaining input 
thatallows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon 
etc. 
Error productions: 



                                                              Syntax Analysis   UNIT II 
 

Compiler Design Page 3 
 

 The parser is constructed using augmented grammar with error productions. If an 
errorproduction is used by the parser, appropriate error diagnostics can be generated to indicate 
theerroneous constructs recognized by the input. 
Global correction: 
Given an incorrect input string x and grammar G, certain algorithms can be used to find aparse 
tree for a string y, such that the number of insertions, deletions and changes of tokens is assmall 
as possible. However, these methods are in general too costly in terms of time and space. 
2.3  CONTEXT-FREE GRAMMARS 
 A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, 
startsymbol and productions. 
 
Terminals : These are the basic symbols from which strings are formed. 
 
Non-Terminals : These are the syntactic variables that denote a set of strings. These help to 
define the language generated by the grammar. 
 
Start Symbol : One non-terminal in the grammar is denoted as the “Start-symbol” and the set of 
strings it denotes is the language defined by the grammar. 
 
Productions : It specifies the manner in which terminals and non-terminals can be combined to 
form strings. Each production consists of a non-terminal, followed by an arrow, followed by a 
string of non-terminals and terminals. 
 
Example of context-free grammar: The following grammar defines simple arithmetic 
expressions: 
expr → expr op expr 
expr → (expr) 
expr → - expr 
expr → id 
op → + 
op → - 
op → * 
op → / 
op → ↑ 
In this grammar, 

 id + - * / ↑ ( ) are terminals. 
 expr , op are non-terminals. 
 expr is the start symbol. 
 Each line is a production. 
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Derivations: 
Two basic requirements for a grammar are : 
1. To generate a valid string. 
2. To recognize a valid string. 
Derivation is a process that generates a valid string with the help of grammar by replacing the 
non-terminals on the left with the string on the right side of the production. 
Example : Consider the following grammar for arithmetic expressions : 
E → E+E | E*E | ( E ) | - E | id 
To generate a valid string - ( id+id ) from the grammar the steps are 
1. E → - E 
2. E → - ( E ) 
3. E → - ( E+E ) 
4. E → - ( id+E ) 
5. E → - ( id+id ) 
In the above derivation, 

 E is the start symbol. 
 - (id+id) is the required sentence (only terminals). 
 Strings such as E, -E, -(E), . . . are called sentinel forms. 

 
Types of derivations: 
The two types of derivation are: 
1. Left most derivation 
2. Right most derivation. 
In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for 
replacement. 
 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first 
for replacement. 
 
Example: 
Given grammar G : E → E+E | E*E | ( E ) | - E | id 
Sentence to be derived : – (id+id) 
LEFTMOST DERIVATION     RIGHTMOST DERIVATION 
E → - E        E → - E 
E → - ( E )        E → - ( E ) 
E → - ( E+E )        E → - (E+E ) 
E → - ( id+E )       E → - ( E+id ) 
E → - ( id+id )       E → - ( id+id ) 
String that appear in leftmost derivation are called left sentinel forms. 
String that appear in rightmost derivation are called right sentinel forms. 
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Sentinels: 
Given a grammar G with start symbol S, if S → α , where α may contain non-terminals 
orterminals, then α is called the sentinel form of G. 
Yield or frontier of tree: 
Each interior node of a parse tree is a non-terminal. The children of node can be aterminal or 
non-terminal of the sentinel forms that are read from left to right. The sentinel formin the parse 
tree is called yield or frontier of the tree. 
Ambiguity: 
A grammar that produces more than one parse for some sentence is said to be ambiguous 
grammar. 
Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 
The sentence id+id*id has the following two distinct leftmost derivations: 
E → E+ E      E → E* E 
E → id + E      E → E + E * E 
E → id + E * E     E → id + E * E 
E → id + id * E     E → id + id * E 
E → id + id * id     E → id + id * id 
The two corresponding parse trees are : 

 
Fig 2.2 Left and right most derivation trees 
 
2.4 WRITING A GRAMMAR 
 
There are four categories in writing a grammar : 
1. Regular Expression Vs Context Free Grammar 
2. Eliminating ambiguous grammar. 
3. Eliminating left-recursion 
4. Left-factoring. 
Each parsing method can handle grammars only of a certain form hence, the initial grammar may 
have to be rewritten to make it parsable. 
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Regular Expressions vs. Context-Free Grammars: 

 
Table 2.1 Comparison of regular expression and context free grammar 

 
 The lexical rules of a language are simple and RE is used to describe them. 
 Regular expressions provide a more concise and easier to understand notation for tokens 

than grammars. 
 Efficient lexical analyzers can be constructed automatically from RE than from 

grammars. 
 Separating the syntactic structure of a language into lexical and nonlexical parts provides 

a convenient way of modularizing the front end into two manageable-sized components. 
 
Eliminating ambiguity: 
 Ambiguity of the grammar that produces more than one parse tree for leftmost or 
rightmostderivation can be eliminated by re-writing the grammar. 
Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 
This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following 
two parse trees for leftmost derivation : 
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Fig 2.3 Parse trees 

To eliminate ambiguity, the following grammar may be used: 
stmt → matched_stmt | unmatched_stmt 
matched_stmt → if expr then matched_stmt else matched_stmt | other 
unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 
 
Eliminating Left Recursion: 
A grammar is said to be left recursive if it has a non-terminal A such that there is aderivation 
A=>Aα for some string α. Top-down parsing methods cannot handle left-recursivegrammars. 
Hence, left recursion can be eliminated as follows: 
 
If there is a production A → Aα | β it can be replaced with a sequence of two productions 
A → βA’ 
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A’ → αA’ | ε 
without changing the set of strings derivable from A. 
Example : Consider the following grammar for arithmetic expressions: 
E → E+T | T 
T → T*F | F 
F → (E) | id 
First eliminate the left recursion for E as 
E → TE’ 
E’ → +TE’ | ε 
Then eliminate for T as 
T → FT’ 
T’→ *FT’ | ε 
Thus the obtained grammar after eliminating left recursion is 
E → TE’ 
E’ → +TE’ | ε 
T → FT’ 
T’ → *FT’ | ε 
F → (E) | id 
 
Algorithm to eliminate left recursion: 
1. Arrange the non-terminals in some order A1, A2 . . . An. 
2. for i := 1 to n do begin 
for j := 1 to i-1 do begin 
replace each production of the form Ai → Aj γ 
by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 
where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions; 
end 
eliminate the immediate left recursion among the Ai-productions 
end 
 
TOP-DOWN PARSING 
 

It can be viewed as an attempt to find a left-most derivation for an input string or an 
attempt to construct a parse tree for the input starting from the root to the leaves. 
 
Types of top-down parsing : 
1. Recursive descent parsing  
2. Predictive parsing  
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1.5.1 RECURSIVE DESCENT PARSING  
 

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of 
recursive procedures to scan its input.


 This parsing method may involve backtracking, that is, making repeated scans of the 

input. 
 
Example for backtracking : 
 
Consider the grammar G : S → cAd 

A → ab |a 
 
and the input  string w=cad. 
The parse tree  can be constructed using the followingtop-down approach : 
Step1: 
Initially create  a tree with single node labeled S. An input pointer points to ‘c’, the first symbol 
of w. Expand  the tree with the production of S. 
 

S 
 
 

c  A   d 
Step2: 
The leftmost  leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second 
symbol of w ‘a’  and consider the next leaf ‘A’. Expand A using the first alternative. 
 

S 
 
 
 

c A   d 
 
 
 

a b 
Step3: 
The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input pointer 
to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the input 
symbol d. 
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Hence discard the chosen production and reset the pointer to second  position. This is called 
backtracking. 
Step4:  
Now try the second alternative for A. 

S 
 
 
 

c A   d       a 
 
 
 
Now we can halt and announce the successful completion of parsing. 
 
Example for  recursive decent parsing: 
A left-recursive  grammar can cause a recursive-descent parser to go into an infinite loop. Hence, 
elimination of  left-recursion must be done before parsing. 
Consider the  grammar for arithmetic expressions 
E → E+T |T 
T → T*F |F 
F→ (E) |id 
After eliminating  the left-recursion the grammar 
becomes, E → TE’ 
E’ → +TE’ | ε 
T → FT’ 
T’ → *FT’ | ε 
F → (E) |id 
Now we can write the procedure for grammar as follows: 
Recursive procedure: 
Procedure E()  
begin 
 

T( ); 
EPRIME( ); 

 
end 
Procedure EPRIME( ) 
 begin 
 
    If input_symbol=’+’ then ADVANCE( ); 
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T( ); EPRIME( ); 

 
end 
Procedure T( ) begin 
 

F( ); TPRIME( ); 
 
end 
Procedure TPRIME( ) begin 
 

If input _symbol=’*’ then ADVANCE(  
); 

 
F( ); TPRIME(  ); 

 
end 
Procedure F( ) begin 
 

If input -symbol=’id’ then ADVANCE(  
); 

 
else if  input-symbol=’(‘ then ADVANCE(  
); 

 
E( ); 

 
else if  input-symbol=’)’ then ADVANCE(  
); 

 
end 
 
else ERROR( ); 
 
Stack implementation: 
 
To recognize input id+id*id : 
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Table 2.2  Stack implementation using recursion. 

 
2.5.2 PREDICTIVE  PARSING  

 
 Predictive  parsing is a special case of recursive descent parsing where no backtracking is 

required. 


 The key  problem of predictive parsing is to determine the production to be applied for a 
non- terminal in case of alternatives. 
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Non-recursive  predictive parser 
 

   INPUT  a + b $   
 

STACK 

           
 

           
 

X  Predictive parsing program  

OUTPUT 
 

   
 

           
 

 Y         
 

 
Z 

 
$ 

 
Parsing Table M 

 
 

Fig 2.4 Non recursive Predictive parser 
The table-driven predictive parser has an input buffer, stack, a parsing  table and an output 
stream. 
Input buffer: 
It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
Stack: 
It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 
Initially, the stack contains the start symbol on top of $. 
Parsing table: 
It is a two-dimensional array M[A, a], where ‘A’ is anon-terminal and ‘a’ is aterminal. 
Predictive parsing program: 
 The parser is  controlled by a program that considers X, the symbol on top of stack, and a, 
the current input  symbol. These two symbols determine the parser action. There are three 
possibilities: 

1. If X = a = $, the parser halts and announces successful completion of parsing.  
 

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next 
input  symbol.  

 
3. If X is  a non-terminal , the program consults entry M[X, a] of the parsing table M. This 

entry  will either be an X-production of the grammar or an error entry.  
If M[X , a] = {X → UVW},the parser replaces X on top of the stack by 
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WVU. If M[X , a] = error, the parser calls an error recovery routine.  
Algorithm for  nonrecursive predictive parsing: 
 
Input : A stringwand a parsing tableMfor grammarG. 
Output : Ifwis inL(G), a leftmost derivation ofw; otherwise, an error indication. 
Method : Initially, the parser has $Son the stack withS, the start symbol ofGon top, andw$ inthe 
input buffer. The program that utilizes the predictive parsing table M to produce a parse for the 
input is as follows: 

set ip to point to the first symbol of w$; 
repeat 

 
let X be the top stack symbol and a the symbol pointed to by ip; 
if Xis a terminal or $ then 

 
if X=a then 

 
pop X from the stack and advance 

ipelse error() 
 

else /* X is a non-terminal */ 
 

if M[X,a] =X→Y1Y2…Yk then begin 
 pop X from the stack; 

 

 push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 
 

 output the production X → Y1Y2. . . Yk 
 

 end 
 

until X= $ 
else error() 

 

/* stack is empty */ 
 

 
Predictive parsing table construction: 

 
The construction of a predictive parser is aided by two functions associated with a grammar G : 
 
1. FIRST  
 
2. FOLLOW  
 
Rules for first( ): 
 
1. If X is terminal,  then FIRST(X) is {X}.  



                                                              Syntax Analysis   UNIT II 
 

Compiler Design Page 15 
 

 
2. If X → ε is  a production, then add ε to FIRST(X).  
 
3. If X is non- terminal and X → aα is a production then add a to FIRST(X).  
 
4. If X is non- terminal and X → Y1Y2…Yk is a production, then place a in FIRST(X) if for some 

i, a is in  FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1=> ε. If ε 
isin FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).  

 
Rules for follow(  ): 
1. If S is a start  symbol, then FOLLOW(S) contains $.  
2. If there is  a production A → αBβ, then everything in FIRST(β) except ε is placed in 

follow(B).  
3. If there is  a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 

everything in FOLLOW(A) is in FOLLOW(B).  
 
Algorithm for construction of predictive parsing table: 
 
Input : GrammarG 
Output : Parsing tableM 
Method : 
1. For each production A →α of the grammar, do steps 2 and 3.  
2. For each terminal a in FIRST(α), add A → α to M[A, a].  
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].  
4. Make each undefined entry of M be error.  

 
Example: 
 
Consider the following grammar : 
 
E → E+T |T 
T → T*F |F 
F→ (E) |id 
After eliminating left-recursion the grammar is 
E → TE’ 
E’ → +TE’ |ε 
T → FT’ 
T’ → *FT’ | ε 
F → (E) |id 
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First( ) : 
FIRST(E) ={  (, id} 
FIRST(E’) ={+  , ε } 
FIRST(T) = {  ( , id} 
FIRST(T’) ={*,  ε } 
FIRST(F) ={  ( , id } 
Follow( ): 
FOLLOW(E)  ={ $, ) } 
FOLLOW(E’)  ={ $, ) } 
FOLLOW(T)  ={ +, $, ) } 
FOLLOW(T’) = { +, $, ) } 
FOLLOW(F) ={+, * , $ , ) } 
 

 Predictive parsing table :            
 

               
 

 

NON- id + * ( ) $ 
  

        
 

 TERMINAL              
 

 E  E → TE’      E → TE’      
 

 E’    E’ → +TE’      E’ → ε  E’→ ε  
 

 T  T → FT’      T → FT’      
 

 T’    T’→ ε  T’→ *FT’    T’ → ε  T’ → ε  
 

 F  F→ id      F→ (E)      
 

Table 2.3 Predictive parsing table 
 
 
 Stack implementation:     

 

        
 

 

stack 
 

Input Output 
  

     
 

 $E   id+id*id $    
 

 $E’T   id+id*id $  E → TE’  
 

 $E’T’F   id+id*id $  T → FT’  
 

 $E’T’id   id+id*id $  F→ id  
 

 $E’T’   +id*id $    
 

 $E’   +id*id $  T’ → ε  
 

 $E’T+   +id*id $  E’ → +TE’  
 

 $E’T   id*id $    
 

 $E’T’F   id*id $  T → FT’  
 

 $E’T’id   id*id $  F→ id  
 

 $E’T’   *id $    
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 $E’T’F*    *id $   T’ → *FT’  
 

 $E’T’F    id $    
 

 $E’T’id    id $   F→ id  
 

 $E’T’   $    
 

 $E’   $   T’ → ε  
 

 $   $   E’ → ε  
 

 
Table 2.4 Stack implementation  

 
LL(1) grammar: 
The parsing  table entries are single entries. So each location has not more than one entry. This 
type of grammar  is called LL(1) grammar. 

 
Consider this  following grammar: 
S → iEtS | iEtSeS  | a 

 
E → b 
After eliminating left factoring, we have 
S → iEtSS’ |a 

 
S’→ eS | ε 

 
E → b 
To construct a parsing table, we need FIRST()and FOLLOW() for all the non-terminals. 
FIRST(S) ={ i, a } 
FIRST(S’) = {e, ε } 
FIRST(E) ={ b} 
FOLLOW(S) ={ $ ,e } 
FOLLOW(S’) = { $ ,e } 
FOLLOW(E) = {t} 
Parsing table: 

NON- a b e i t $ 
TERMINAL       

S S → a   S → iEtSS’   
       

S’   S’→ eS   S’→ ε 
   S’→ ε    

E  E → b     
       

Table 2.5 Parsing table 
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Since there are more than one production, the grammar is not LL(1) grammar. 
 
Actions performed in predictive parsing: 

1. Shift  
2. Reduce  
3. Accept  
4. Error  

Implementation  of predictive parser: 
1. Elimination  of left recursion, left factoring and ambiguous grammar.  
2. Construct  FIRST() and FOLLOW() for all non-terminals.  
3. Construct  predictive parsing table.  
4. Parse  the given input string using stack and parsing table.  

2.6 BOTTOM-UP  PARSING 
 Constructing a  parse tree for an input string beginning at the leaves and going 
towards the root is called bottom-up parsing. 
A general type of bottom-up parser is a shift-reduce parser. 
 
2.6.1 SHIFT-REDUCE PARSING 

 
Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a 

parse tree for an input string beginning at the leaves (the bottom) and working up towards 
the root (the top). 
Example: 
Consider the grammar: 
S → aABe 
A → Abc | b 
B→ d 
The sentence to be recognized is abbcde. 
 

REDUCTION (LEFTMOST) 
RIGHTMOST 
DERIVATION 

abbcde (A → b) S → aABe 
aAbcde (A → Abc) → aAde 
aAde (B → d) → aAbcde 
aABe (S → aABe) → abbcde 
S   
 
The reductions trace out the right-most derivation in reverse. 
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Handles: 
A handle of a string is a substring that matches the right side of a production, and whose 

reduction to the non-terminal on the left side of the production represents one step along the 
reverse of a rightmost derivation. 
Example: 
Consider the  grammar: 
E → E+E 
 
E → E*E 
 
E → (E) 
 
E → id 
 
And the input  string id1+id2*id3 
The rightmost  derivation is : 
E → E+E 
 

→ E+E*E 
 

→ E+E*id3 
 

→ E+id2*id3 
 

→ id1+id2*id3 
In the above derivation the underlined substrings are called handles. 
Handle pruning: 
 A rightmost derivation in reverse can be obtained by “handle pruning”. 
 
(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the nth right-
sentinel form of some rightmost derivation. 
Stack implementation of shift-reduce parsing : 
 

 Stack Input  Action  
 

       
 

 $ id1+id2*id3 $  shift  
 

       
 

 $ id1 +id2*id3 $  reduce by E→id  
 

       
 

 $ E +id2*id3 $  shift  
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 $ E+ id2*id3 $  shift  
 

       
 

 $ E+id2 *id3 $  reduce by E→id  
 

       
 

 $ E+E *id3 $  shift  
 

       
 

 $ E+E* id3 $  shift  
 

       
 

 

$ E+E*id3 
 

$ 
 

 reduce by E→id 
  

    
 

       
 

 $ E+E*E  $   reduce by E→ E *E  
 

       
 

 $ E+E  $   reduce by E→ E+E  
 

       
 

 $ E  $   accept  
 

       
 

 
Table 2.6 Stack implementation of shift-reduce parsing : 

Actions in shift -reduce parser: 
 
     shift  –  The next input symbol is shifted onto the top of the stack. 
 
 reduce –  The parser replaces the handle within a stack with a non-terminal. 

 accept –  The parser announces successful completion of parsing. 
 
   error –  The parser discovers that a syntax error has occurred and calls an error recovery  

routine. 
Conflicts in shift-reduce parsing: 
There are two conflicts that occur in shift shift-reduce parsing: 

Shift-reduce conflict: The parser cannot decide whether to shift or to reduce. 
Reduce-reduce conflict: The parser cannot decide which of several reductions to make. 

1. Shift-reduce conflict: 
Example: 
Consider the grammar: 
E→E+E |E*E |id and input id+id*id 

tack Input Action Stack Input  Action 
      

$ E+E *id $ Reduce by $E+E *id $ Shift 
  E→E+E    
      

$ E *id $ Shift $E+E* id $ Shift 
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$ E* id $ Shift $E+E*id $ Reduce by 

     E→id 
      

$ E*id $ Reduce by $E+E*E $ Reduce by 
  E→id   E→E*E 
      

$ E*E $ Reduce by $E+E $ Reduce by 
  E→E*E   E→E*E 
      

$ E   $E   

      
Table 2.7  Shift reduce conflicts 

 
2. Reduce-reduce  conflict: 
Consider the  grammar: 
M → R+R |R+c  
|R R → c 

 
and input c+c 
Stack  Input  Action  Stack  Input Action 

      

$  c+c $  Shift $  c+c $ Shift 

      
$ c  +c $  Reduce by  $ c  +c $ Reduce by 

   R→c   R→c 
      

$ R +c $ Shift $ R +c $ Shift 
      

$ R+ c $ Shift $ R+ c $ Shift 

      
$ R+c $ Reduce by $ R+c $ Reduce by 

  R→c   M→R+c 
      

$ R+R $ Reduce by $ M $  
  M→R+R    
      

$ M $     
      

Table 2.8 Reduce reduce conflicts 
Viable prefixes: 
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 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form. 

 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser 

are called viable prefixes. 

 The set of viable prefixes is a regular language. 
 
2.6.2 OPERATOR-PRECEDENCE PARSING 
 
An efficient way of constructing shift-reduce parser is called operator-precedence parsing. 
Operator precedence parser can be constructed from a grammar called Operator-grammar. These 
grammars have the property that no production on right side is ɛ or has two adjacent non-
terminals. 
Example: 
Consider the grammar: 
E → EAE |(E)  | -E |id 
 
A → + | - |* |/  | ↑ 
Since the right  side EAE has three consecutive non-terminals, the grammar can be written as 
follows: 
 
E → E+E |E- E |E*E | E/E |E↑E | -E |id 
Operator  precedence relations: 
 
There are three  disjoint precedence relations 

namely <.-  less than 
 

= -  equal to  
.>-  greater than 

The relations  give the followingmeaning: 

a <. b –  a yields precedence to b 
a=b  – a has the same precedence as b 

a .> b – a takes precedence over b 
Rules for binary operations: 
 
1. If operator θ1 has higher precedence than operator θ2, then 

make θ1
.> θ2 and θ2<. θ1 
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2. If operators θ1 and θ2, are of equal precedence, then make  
 

θ1
.> θ2 and θ2

.> θ1 if operators are left associative 

θ1<. θ2 and θ2<. θ1 if right associative 
 
3. Make the following for all operators θ:  
 

θ <.id , id.>θ 

θ <.(, (<.θ 
 

) .> θ , θ .> ) θ 
.> $ , $ <. θ 

 
Also make 

 

( = ) , ( <. ( , ) .> ) , ( <. id , id .> ) , $ <. id , id .> $ , $ <. ( , ) .> $ 
 
Example: 
Operator-precedence relations for the grammar 
E → E+E |E-E |E*E | E/E |E↑E | (E) | -E |id is given in the following table assuming 

1. ↑ is of highest precedence and right-associative  
 

2. * and / are of next higher precedence and left-associative, and  
 

3. + and - are of lowest precedence and left-associative  
 

Note that the blanks in the table denote error entries. 
 
      TABLE : Operator-precedence relations         

 
   

 

 

 

 

 

   

 

   

 

 

 

 

 

   

   

+ - * 
 

/ ↑ 
 

id ( ) $ 
  

             
 

 +    .>   .>  <.  <.  <.  <.  <.  .>  .>  
 

 -    .>   .>  <.  <.  <.  <.  <.  .>  .>  
 

 *    .>   .>   .>   .>  <
.  <.  <

.  .>  .>  
 

 /    .>   .>   .>   .>  <.  <.  <.  .>  .>  
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 ↑   
.>  

.>  
.>  

.>  <
.  <.  <

.  
.>  

.>  
 

 Id    .>   .>   .>   .>   ∙
.>      .>  .>  

 

 (   <
.  <

.  <
.  <.  <

.  <.  <
.  =    

 

 )    .>   .>   .>   .>   .>      .>  .>  
 

 $   <
.  <

.  <
.  <.  <

.  <.  <
.      

 

Table 2.9 Operator precedence relations 
 
 
Operator  precedence parsing algorithm:             

 

Input : An  input string w and a table of precedence relations.         
 

Output : Ifwis well formed, askeletalparse tree ,with a placeholder non-terminalE labeling 
allinterior nodes; otherwise, an error indication. 
 
Method : Initially the stack contains $ and the input buffer the stringw$. To parse, we 
executethe following program : 

(1)Set ip to point to the first symbol of w$; 
 

(2) repeat forever  
 

(3) if $ is on top of the stack andippoints to $ then  
 

(4) return  
 

else begin 
 

(5) let a be the topmost terminal symbol on the 
stack and let b be the symbol pointed to by 
ip; 

(6) if a<.bora=b then begin  
(7) push b onto the stack;  

 
(8) advance ip to the next input symbol;  

 
end; 

(9) else if a.>b then      /*reduce*/ 
(10) repeat  
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(11) pop the stack  

 
(12) until the top stack terminal is related by 

<.to the terminal most recently 
popped  

 
(13) else error( ) 

 
end 

Stack implementation of operator precedence parsing: 
 

Operator precedence parsing uses a stack and precedence relation table for its 
implementation of above algorithm. It is a shift-reduce parsing containing all four actions 
shift, reduce, accept and error. 

 
The initial configuration of an 

operator precedence 
parsing is STACK 

 
$ 

where w is the  input string to be parsed. 
Example: 
Consider the  grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string isid+id*id .The 
implementation  is as follows: 

 STACK   INPUT COMMENT 
$ <∙  id+id*id $  shift id 
$ id  ∙>  +id*id $  pop the top of the stack id 
$ <∙  +id*id $  shift + 
$ + <∙  id*id $  shift id 
$ +id  ∙>  *id $  pop id 
$ + <∙  *id $  shift * 
$ + * <∙  id $  shift id 
$ + * id ∙> $ pop id 
$ + * ∙> $ pop * 
$ + ∙> $ pop + 
$  $ accept 

 

 

INPUT 
w$ 
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Table 2.10 operator precedence 
Advantages of operator precedence parsing: 

 
1. It is easy to implement.  

 
2. Once an operator precedence relation is made between all pairs of terminals of a grammar , 

the grammar can be ignored. The grammar is not referred anymore during implementation.  
 
Disadvantages of operator precedence parsing: 

 
1. It is hard to handle tokens like the minus sign (-) which has two different precedence.  

 
2. Only a small class of grammar can be parsed using operator-precedence parser.  

 
 LR PARSERS 
 

An efficient bottom-up syntax analysis technique that can be used to parse a large class of 
CFG is called LR(k) parsing. The ‘L’ is for left-to-right scanning of the input, the ‘R’ for 
constructing a rightmost derivation in reverse, and the ‘k’ for the number of input symbols. 
When ‘k’ is omitted, it is assumed to be 1. 
 
Advantages of LR parsing: 
 

 It recognizes virtually all programming language constructs for which CFG can be 
written. 


 It is an efficient non-backtracking shift-reduce parsing method. 


 A grammar that can be parsed using LR method is a proper superset of a grammar that 

can be parsed with predictive parser. 


 
 

 It detects asyntactic error as soon as possible. 
 
Drawbacks of LR method: 
 

It is too  much of work to construct a LR parser by hand for a programming language 
grammar. A  specialized tool, called a LR parser generator, is needed. Example: YACC. 
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Types of LR  parsing method: 
 
1. SLR- Simple  LR  
 

 Easiest  to implement, least powerful. 

2. CLR- Canonical  LR  
 

 Most  powerful, most expensive. 

3. LALR- Look -Ahead LR  
 

 Intermediate  in size and cost between the other two methods. 
 
The LR parsing  algorithm: 
 
The schematic  form of an LR parser is as follows: 
 
 

INPUT  
a1 … 

 
ai … 

 
An $ 

 
 

       
 

              
 

Sm      LR parsing program   OUTPUT 
 

Xm 
             

 

             
 

Sm-1              
 

Xm-1              
 

…      action  goto     
 

S0              
 

      Fig 2.5 LR Parser 
STACK 
It consists of : an input, an output, a stack, a driver program, and a  parsing table that has two 
parts (action and goto). 
 
 The driver program is the same for all LR parser. 

 The parsing program reads characters from an input buffer one at a time. 

 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on 
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top. Each Xi is a grammar symbol and each si is a state. 

 The parsing table consists of two parts : action and goto functions. 
 
Action : The parsing program determines sm, the state currently on top of stack, and ai, thecurrent 
input symbol. It then consults action[sm,ai] in the action table which can have one of four values : 
 
1. shift s, where s is a state,  
2. reduce by a  grammar production A → β,  
3. accept, and  
4. error.  
Goto : The  function goto takes a state and grammar symbol as arguments and producesa state. 
 
LR Parsing  algorithm: 
 
Input: An input  string w and an LR parsing table with functions action and goto for grammarG. 
 
Output: Ifwis in L(G), a bottom-up-parse forw; otherwise, an error indication. 
 
Method: Initially,  the parser has s0 on its stack, where s0 is the initial state, and w$in the 
inputbuffer. The  parser then executes the following program : 
 

set ip to point to the first input symbol of 
w$;  repeat forever begin 

 let s be the state on top of the stack 
and a the symbol pointed to by ip; 

 
if action[s,a] =shifts’ then begin push a 

then s’ on top of the stack; advance 
ip to the next input symbol 

end 
 

else if action[s,a]=reduce A→β then begin 
pop 2* |β |symbols off the stack; 

 
let s’ be the state now on top of the stack; 
push A then goto[s’, A] on top of the 
stack; output the production A→ β 

end 
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else if action[s,a]=accept then 
return 

else error( ) 
 

end 
 
CONSTRUCTINGSLR(1) PARSING TABLE: 
To perform SLR parsing, take grammar as input and do the following: 
1. Find LR(0) items.  
2. Completing the closure.  
3. Compute goto(I,X), where, I is set of items and X is grammar symbol.  
LR(0) items: 

An LR(0) item of a grammar G is a production of G with a dot at some position of the 
right side. For example, production A → XYZ yields the four items : 
 
A → . XYZ 
A → X . YZ 
A → XY . Z 
A → XYZ . 
Closure operation: 
 

If I is a  set of items for a grammar G, then closure(I) is the set of items constructed from 
I by the two rules: 
1. Initially,  every item in I is added to closure(I).  
2. If A → α .  Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it is 

not already  there. We apply this rule until no more new items can be added to closure(I).  
Goto operation: 

Goto(I,  X) is defined to be the closure of the set of all items [A→ αX . β] 
suchthat[A→ α . Xβ] is  in I. 
Steps to construct  SLR parsing table for grammar G are: 

1. Augment  G and produce G’  
2. Construct  the canonical collection of set of items C for G’  
3. Construct  the parsing action function action and goto using the following algorithm that 

requires FOLLOW(A) for each non-terminal of grammar.  
 

Algorithmfor construction of SLR parsing table: 
Input  : An augmented grammar G’ 
Output : The SLR parsing table functionsactionandgotofor G’ 
Method : 
1. Construct C ={I0, I1, …. In}, the collection of sets of LR(0) items for G’.  
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2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:  
(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to “shift j”. Here a must be 

terminal.  
(b) If[A→α∙] is in Ii , then set action[i,a] to “reduce A→α” for all a in FOLLOW(A).  
(c) If [S’→S.] is in Ii, then set action[i,$] to “accept”.  

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1). 
3. The goto transitions for state i are constructed for all non-terminals  A using the rule: If 

goto(Ii,A)= Ij, then goto[i,A] = j. 
4. All entries not defined by rules (2) and (3) are made “error”  
5. The initial state of the parser is the one constructed from the set of items containing 

[S’→.S].  
Example for SLR parsing: 
Construct SLR parsing for the following grammar : 
G : E → E + T | T 

T → T * F | F 
F→ (E) | id 

The given grammar is : 
G : E → E + T ------ (1) 

E →T ------ (2) 
T → T * F  ------ (3) 
T → F  ------ (4) 
F→ (E)  ------ (5) 
F→ id  ------ (6) 

 
Step 1 : Convert  given grammar into augmented grammar. 
Augmented  grammar : 

E’ → E 
E → E + T 
E → T 
T → T * F 
T → F 
F→ (E) 
F→ id 

Step 2 : Find LR (0) items. 
I0 : E’ → . E 

E → . E + T  
E → . T  
T → . T * F  
T → . F  
F → . (E)  
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F → . id  
 

GOTO ( I0 , E)   GOTO ( I4 , id ) 
I1 : E’ → E .  I5 : F→ id . 

E → E . + T    
     
    

 

 
 
 



                                                              Syntax Analysis   UNIT II 
 

Compiler Design Page 32 
 

 
 
Blank entries are error entries. 
Stack implementation: 
Check whether the input id + id * id is valid or not. 



                                                              Syntax Analysis   UNIT II 
 

Compiler Design Page 33 
 

 
 Table 2.12 Stack implemetation using SLR 
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TYPE CHECKING: 
 
A compiler must check that the source program follows both syntactic and semantic conventions 
of the source language. 
This checking, called static checking, detects and reports programming errors. 
Some examples of static checks: 
1. Type checks – A compiler should report an error if an operator is applied to an incompatible 
operand. Example: If an array variable and function variable are added together. 
 
2. Flow-of-control checks – Statements that cause flow of control to leave a construct must have 
some place to which to transfer the flow of control. Example: An error occurs when an 
enclosing statement, such as break, does not exist in switch statement. 
 

 
 
 
 

 A type checker verifies that the type of a construct matches that expected by its context. 
For example : arithmetic operator mod in Pascal requires integer operands, so a type 
checker verifies that the operands of mod have type integer. 

 Type information gathered by a type checker may be needed when code is generated. 
 

TYPE SYSTEMS: 
 The design of a type checker for a language is based on information about the syntactic 
constructs in the language, the notion of types, and the rules for assigning types to language 
constructs. 
For example : “ if both operands of the arithmetic operators of +,- and * are of type integer, then 
the result is of type integer ”. 
Type Expressions: 

 The type of a language construct will be denoted by a “type expression.” 
 A type expression is either a basic type or is formed by applying an operator called a type 

            constructor to other type expressions. 
 The sets of basic types and constructors depend on the language to be checked. 
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The following are the definitions of type expressions: 
1. Basic types such as boolean, char, integer, real are type expressions. 
A special basic type, type error, will signal an error during type checking; void denoting 
“the absence of a value” allows statements to be checked. 
2. Since type expressions may be named, a type name is a type expression. 
3. A type constructor applied to type expressions is a type expression. 
Constructors include: 
Arrays: If T is a type expression then array (I,T) is a type expression denoting the type 
of an array with elements of type T and index set I. 
Products: If T1 and T2 are type expressions, then their Cartesian product T1 X T2 is a 
type expression. 
Records : The difference between a record and a product is that the fields of a record have 
names. The record type constructor will be applied to a tuple formed from field names and 
field types. 
 
For example: 
 type row = record 
  address: integer; 
  lexeme: array[1..15] of char 
 end; 
var table: array[1...101] of row; 
declares the type name row representing the type expression record((address X integer)  X 
(lexeme X array(1..15,char))) and the variable table to be an array of records of this type. 
Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type 
“pointer to an object of type T”. 
For example, var p: ↑ row declares variable p to have type pointer(row). 
Functions : A function in programming languages maps a domain type D to a range type R. 
The type of such function is denoted by the type expression D → R 
Type expressions may contain variables whose values are type expressions. 
 Tree representation for char x char → pointer (integer) 
 

 
 
Type systems 
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 A type system is a collection of rules for assigning type expressions to the various parts 
of a program. 

 A type checker implements a type system. It is specified in a syntax-directed manner. 
 Different type systems may be used by different compilers or processors of the same 

            language. 
Static and Dynamic Checking of Types 

 Checking done by a compiler is said to be static, while checking done when the target 
             program runs is termed dynamic. 

 Any check can be done dynamically, if the target code carries the type of an element 
along with the value of that element. 

Sound type system: 
 A sound type system eliminates the need for dynamic checking for type errors because it 
allows us to determine statically that these errors cannot occur when the target program runs. 
That is, if a sound type system assigns a type other than type_error to a program part, then type 
errors cannot occur when the target code for the program part is run. 
Strongly typed language 
 A language is strongly typed if its compiler can guarantee that the programs it accepts 
will execute without type errors. 
Error Recovery 

 Since type checking has the potential for catching errors in program, it is desirable for 
            type checker to recover from errors, so it can check the rest of the input. 

 Error handling has to be designed into the type system right from the start; the type 
           checking rules must be prepared to cope with errors. 
 
SPECIFICATION OF A SIMPLE TYPE CHECKER: 
 Here, a type checker for a simple language in which the type of each identifier 
must be declared before the identifier is used. The type checker is a translation scheme that 
synthesizes the type of each expression from the types of its subexpressions. The type checker 
can handle arrays, pointers, statements and functions. 
A Simple Language 
Consider the following grammar: 
P → D ; E 
D→ D ; D | id : T 
T → char | integer | array [ num ] of T | ↑ T 
E → literal | num | id | E mod E | E [ E ] | E ↑ 
Translation scheme: 
P→ D ; E 
D→ D ; D 
D→ id : T { addtype (id.entry , T.type) } 
T → char                         { T.type : = char } 
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T → integer                     { T.type : = integer } 
T → ↑ T1                         { T.type : = pointer(T1.type) } 
T → array [ num ] of T1  { T.type : = array ( 1… num.val , T1.type) } 
In the above language, 
→ There are two basic types : char and integer ; 
→ type_error is used to signal errors; 
→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression 
pointer ( integer ). 
Type checking of expressions: 
 In the following rules, the attribute type for E gives the type expression assigned to the 
expression generated by E. 
1. E → literal { E.type : = char } 
E → num { E.type : = integer } 
 
 Here, constants represented by the tokens literal and num have type char and integer. 
 
2. E → id { E.type : = lookup ( id.entry ) } 
 
lookup ( e ) is used to fetch the type saved in the symbol table entry pointed to by e. 
 
3. E → E1 mod E2 { E.type : = if E1. type = integer and 
 E2. type = integer then integer 
 else type_error } 
The expression formed by applying the mod operator to two subexpressions of type integer has 
type integer; otherwise, its type is type_error. 
 
4. E → E1 [ E2 ]         { E.type : = if E2.type = integer and 
    E1.type = array(s,t) then t 
   else type_error } 
 
In an array reference E1 [ E2 ] , the index expression E2 must have type integer. The result is 
the element type t obtained from the type array(s,t) of E1. 
5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t 
    else type_error } 
The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type t 
of the object pointed to by the pointer E. 
 
Type checking of statements: 
 Statements do not have values; hence the basic type void can be assigned to them. If an 
error is detected within a statement, then type_error is assigned. 
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Translation scheme for checking the type of statements: 
 
1. Assignment statement: 
  S → id : = E             { S.type : = if id.type = E.type then void 
       else type_error } 
2. Conditional statement: 
 S → if E then S1 { S.type : = if E.type = boolean then S1.type 
     else type_error } 
3. While statement: 
 S → while E do S1 { S.type : = if E.type = boolean then S1.type 
     else type_error } 
 
4. Sequence of statements: 
 
  S → S1 ; S2 { S.type : = if S1.type = void and 
                            S1.type = void then void 
                      else type_error } 
Type checking of functions 
 
 The rule for checking the type of a function application is : 
  E → E1 ( E2)       { E.type : = if E2.type = s and 
      E1.type = s → t then t 
           else type_error } 
 
SOURCE LANGUAGE ISSUES 
 
Procedures: 
 A procedure definition is a declaration that associates an identifier with a statement. The 
identifier is the procedure name, and the statement is the procedure body. 
For example, the following is the definition of procedure named readarray : 
  procedure readarray; 
  var i : integer; 
  begin 
   for i : = 1 to 9 do read(a[i]) 
  end; 
 When a procedure name appears within an executable statement, the procedure is said to 
be called at that point. 
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Activation trees: 
 
 An activation tree is used to depict the way control enters and leaves activations. In an 
activation tree, 
1.  Each node represents an activation of a procedure. 
2.  The root represents the activation of the main program. 
3.  The node for a is the parent of the node for b if and only if control flows from activation a to 
      b. 
4.  The node for a is to the left of the node for b if and only if the lifetime of a occurs before the 
lifetime of b. 
 
Control stack: 

 A control stack is used to keep track of live procedure activations. The idea is to push the 
            node for an activation onto the control stack as the activation begins and to pop the node 
            when the activation ends. 

 The contents of the control stack are related to paths to the root of the activation tree. 
 When node n is at the top of control stack, the stack contains the nodes along the path 
 from n to the root. 
The Scope of a Declaration: 
A declaration is a syntactic construct that associates information with a name. 
Declarations may be explicit, such as: 
  var i : integer ; 
or they may be implicit. Example, any variable name starting with I is assumed to denote an 
integer. 
The portion of the program to which a declaration applies is called the scope of that declaration. 
 
Binding of names: 
 Even if each name is declared once in a program, the same name may denote different 
data objects at run time. “Data object” corresponds to a storage location that holds values. 
The term environment refers to a function that maps a name to a storage location. 
The term state refers to a function that maps a storage location to the value held there. 
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 When an environment associates storage location s with a name x, we say that x is bound 
to s. This association is referred to as a binding of x. 
 
STORAGE ORGANISATION: 

 The executing target program runs in its own logical address space in which each 
 program value has a location. 

 The management and organization of this logical address space is shared between the 
 complier, operating system and target machine. The operating system maps the logical 
 address into physical addresses, which are usually spread throughout memory. 
 
 
 Typical subdivision of run-time memory: 

   
  Run-time storage comes in blocks, where a byte is the smallest unit of addressable 

            memory. Four bytes form a machine word. Multibyte objects are stored in consecutive 
 bytes and given the address of first byte. 

 The storage layout for data objects is strongly influenced by the addressing constraints of 
 the target machine. 

 A character array of length 10 needs only enough bytes to hold 10 characters, a compiler 
 may allocate 12 bytes to get alignment, leaving 2 bytes unused. 

 This unused space due to alignment considerations is referred to as padding. 
 The size of some program objects may be known at run time and may be placed in an 

 area called static. 
 The dynamic areas used to maximize the utilization of space at run time are stack and 

 heap. 
Activation records: 

 Procedure calls and returns are usually managed by a run time stack called the control 
 stack. 

 Each live activation has an activation record on the control stack, with the root of the 
 activation tree at the bottom, the latter activation has its record at the top of the stack. 
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 The contents of the activation record vary with the language being implemented. The 
 diagram below shows the contents of activation record. 
 

 
 Temporary values such as those arising from the evaluation of expressions. 
 Local data belonging to the procedure whose activation record this is. 
 A saved machine status, with information about the state of the machine just before the 

 call to procedures. 
 An access link may be needed to locate data needed by the called procedure but found 

 elsewhere. 
 A control link pointing to the activation record of the caller. 
 Space for the return value of the called functions, if any. Again, not all called procedures 

 return a value, and if one does, we may prefer to place that value in a register for 
 efficiency. 

 The actual parameters used by the calling procedure. These are not placed in activation 
 record but rather in registers, when possible, for greater efficiency. 
 
STORAGE ALLOCATION STRATEGIES 
The different storage allocation strategies are : 
1. Static allocation – lays out storage for all data objects at compile time 
2. Stack allocation – manages the run-time storage as a stack. 
3. Heap allocation – allocates and deallocates storage as needed at run time from a data area 
known as heap. 
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STATIC ALLOCATION 
 In static allocation, names are bound to storage as the program is compiled, so there is no 

 need for a run-time support package. 
 Since the bindings do not change at run-time, everytime a procedure is activated, its 

 names are bound to the same storage locations. 
 Therefore values of local names are retained across activations of a procedure. That is, 

 when control returns to a procedure the values of the locals are the same as they were 
 when control left the last time. 

 From the type of a name, the compiler decides the amount of storage for the name and 
 decides where the activation records go. At compile time, we can fill in the addresses at 
 which the target code can find the data it operates on. 
 
STACK ALLOCATION OF SPACE 
 

 All compilers for languages that use procedures, functions or methods as units of user- 
 defined actions manage at least part of their run-time memory as a stack. 

 Each time a procedure is called , space for its local variables is pushed onto a stack, and 
 when the procedure terminates, that space is popped off the stack. 
 
Calling sequences: 

 Procedures called are implemented in what is called as calling sequence, which consists 
 of code that allocates an activation record on the stack and enters information into its 
 fields. 

 A return sequence is similar to code to restore the state of machine so the calling 
 procedure can continue its execution after the call. 

 The code in calling sequence is often divided between the calling procedure (caller) and 
 the procedure it calls (callee). 

 When designing calling sequences and the layout of activation records, the following 
 principles are helpful: 

 Values communicated between caller and callee are generally placed at the 
 beginning of the callee’s activation record, so they are as close as possible to the 
 caller’s activation record. 
 

 Fixed length items are generally placed in the middle. Such items typically include 
 the control link, the access link, and the machine status fields. 

 Items whose size may not be known early enough are placed at the end of the 
 activation record. The most common example is dynamically sized array, where the 
 value of one of the callee’s parameters determines the length of the array. 

 We must locate the top-of-stack pointer judiciously. A common approach is to have 
 it point to the end of fixed-length fields in the activation record. Fixed-length data 
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 can then be accessed by fixed offsets, known to the intermediate-code generator, 
 relative to the top-of-stack pointer. 
 

 
 

 The calling sequence and its division between caller and callee are as follows. 
 The caller evaluates the actual parameters. 
 The caller stores a return address and the old value of top_sp into the 

callee’s activation record. The caller then increments the top_sp to the 
respective positions. 

 The callee saves the register values and other status information. 
 The callee initializes its local data and begins execution. 

 A suitable, corresponding return sequence is: 
 

 The callee places the return value next to the parameters. 
 Using the information in the machine-status field, the callee restores 

top_sp and other registers, and then branches to the return address that the 
caller placed in the status field. 

 Although top_sp has been decremented, the caller knows where the return 
value is, relative to the current value of top_sp; the caller therefore may 
use that value. 

Variable length data on stack: 
 
 The run-time memory management system must deal frequently with the allocation of 

 space for objects, the sizes of which are not known at the compile time, but which are 
 local to a procedure and thus may be allocated on the stack. 
 The reason to prefer placing objects on the stack is that we avoid the expense of garbage 

 collecting their space. 



                                                              Syntax Analysis   UNIT II 
 

Compiler Design Page 44 
 

 The same scheme works for objects of any type if they are local to the procedure called 
 and have a size that depends on the parameters of the call. 
 

 
 
 

 Procedure p has three local arrays, whose sizes cannot be determined at compile time. 
 The storage for these arrays is not part of the activation record for p. 

 Access to the data is through two pointers, top and top-sp. Here the top marks the actual 
 top of stack; it points the position at which the next activation record will begin. 

 The second top-sp is used to find local, fixed-length fields of the top activation record. 
 The code to reposition top and top-sp can be generated at compile time, in terms of sizes 

 that will become known at run time. 
 
HEAP ALLOCATION 
 
Stack allocation strategy cannot be used if either of the following is possible : 
1.  The values of local names must be retained when an activation ends. 
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2.  A called activation outlives the caller. 
 Heap allocation parcels out pieces of contiguous storage, as needed for activation 

records or other objects. 
 Pieces may be deallocated in any order, so over the time the heap will consist of 

alternate areas that are free and in use. 
 

 
 

 The record for an activation of procedure r is retained when the activationends. 
 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.      
 If the retained activation record for r is deallocated, there will be free space in the heap 

between the activation records for s and q. 
 
 

 
 


