BTS -	T 7	11'	1 4	A0 41
RIN.	– V –	. ! !	14	пхді

Reg. No.

B. Tech. Degree V Semester Examination November 2014

IT/CS/CE/SE/ME/EE/EC/EB/EI/FT 1501 ENGINEERING MATHEMATICS IV (2012 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A (Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) A random variable X has a uniform distribution over (-3,3), find k for which $P(X > k) = \frac{1}{2}$. Also evaluate P(X < 2).
 - (b) Find the mean and standard deviation of the total number of heads occurring in three tosses of an unbiased coin.
 - (c) A random sample of size 16 has mean 53. The sum of the squares of the deviations taken from the mean is 150. Obtain 99% confidence limits of the population mean.
 - (d) A random sample of size 18 is taken from a normal population with mean 20 and variance 64. Find the probability that the sample variance s² will be less than the population variance.
 - (e) Prove that $E = e^{hD}$ and hence show that

$$D = \frac{1}{h} \left(\Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^{3} - \dots \right)$$

- (f) Express $y = 2x^3 3x^2 + 3x 10$ in factorial notation by taking h = 1 and hence find the value of $\Delta^3 y$.
- (g) Using Taylor's series method solve $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 at x = 0.2
- (h) Solve $\frac{dy}{dx} = y \frac{2x}{y}$, y(0) = 1 in the range 0 < x < 0.2 by using modified Euler's method.

PART B

 $(4 \times 15 = 60)$

- II. (a) In a certain factory turning out optical lenses, there is a small chance of 1/500 for any one of the lenses to be defective. The lenses are supplied in a packet of 10. Calculate the approximate number of packets containing (i) no defective (ii) one defective (iii) more than two defective in a consignment of 20000 packets.
 - (b) Fit a curve of the form $y = ab^x$ for the following data:

(8)

X: 1 2 3 4 5 Y: 1.6 4.5 13.8 40.2 125

OR

- III. (a) The income distribution of workers in a certain factory was found to be normal with mean ₹1000 and standard deviation ₹100. There were 180 persons getting above ₹1200. How many persons were there in all?
 - (b) Find regression lines from the following values of x and y and hence find the correlation coefficient (8)

X: 1 2 3 4 5

Y: 2 5 3 8 7

IV. (a) A random sample of size of 1000 of school children from rural areas shows the average height 150cm with a standard deviation 45.2cm. A similar sample of 800 students from urban schools has average height 146cm with a standard deviation of 37.3cm. Can you conclude that students of rural areas are taller than students in urban area? ($\alpha = 0.05$)

(b) A population follows normal distribution with mean μ and variance 9. To test $H_0: \mu = 5$ against $\mu > 7$, the test procedure suggested to reject H_0 if $\overline{x} \ge 6$ where \overline{x} is the mean of a sample of size 16. Find the significance level and power of the test.

OR

V. (a) Two samples of sizes 9 and 8 gave the variances 17.778 and 11.375. Test whether these samples are drawn from the same normal population ($\alpha = 0.05$).

(b) A sample of 400 individuals is found to have a mean weight of 67.47kg. Can it be reasonably regarded as a sample from a large population with mean weight 67.39kg and standard deviation 1.3kg? Also find 99% confidence limits.

VI. (a) Estimate $\sqrt{1.12}$ using Stirling's formula from the following table. (7)

X: 1 1.05 1.10 1.15 1.20 1.25

f(x): 1 1.02470 1.04881 1.07238 1.09544 1.11803

(b) Evaluate $\int_{0}^{1} \frac{dx}{x+1}$ by using (i) Simpson's $1/3^{rd}$ rule (ii) Gaussian three point formula. (8)

OR

VII. (a) A rod is rotating in a plane. The following table gives the angle θ (in radians) through which the rod has turned for various values of time t (seconds). Calculate the angular velocity and angular acceleration of the rod at t = 0.2 seconds.

T: 0 0.2 0.4 0.6 0.8 1

 θ : 0 0.12 0.49 1.12 2.02 3.2

(b) Given the following values

X: 5 7 11 13 17

f(x): 150 392 1452 2366 5202

Find f(9) using Newton's divided difference formula

VIII. (a) Given $u_t = u_{xx}$, u(0,t) = 0, u(5,t) = 0, $u(x,0) = x^2(25 - x^2)$, find u in the range taking h = 1 (7) and up to t = 2 seconds.

(b) Solve $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y$ given y(0) = 0, z(0) = 1 for x = 0.1 by using Runge-Kutta method.

(8)

OR

IX. (a) Solve $u_{tt} = 4U_{xx}$ with boundary conditions u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x), (7) $U_t(x,0) = 0$ for one half period of vibration.

(b) Solve $u_{xx} + U_{yy} = 0$ by using Liebmann's iteration procedure. (8)
