
1

UNIT - I

Operating System Introduction

System components

 A computer system can be divided roughly into four components: the hardware, the

operating system, the application programs, and the users.

 Hardware: The hardware the central processing unit (CPU), the memory, and the

input/output (I/O) devices—provide the basic computing resources for the system.

 Application programs: The application programs, such as word processors,

spreadsheets, compilers, and Web browsers—define the ways in which these resources

are used to solve users’ computing problems.

 Operating system: The operating system controls the hardware and coordinates its use

among the various application programs for the various users.

 We can also view a computer system as consisting of hardware, software, and data.

The operating system provides the means for proper use of these resources in the operation of

the computer system. An operating system is similar to a government. Like a government, it

performs no useful function by itself. It simply provides an environment within which other

programs can do useful work.

Operating System Definition

 An operating system is a program that manages a computer’s hardware. It also

provides a basis for application programs and acts as an intermediary between the computer

user and the computer hardware.

or

 An Operating system is one of the programs running at all times on the computer,

usually called kernel.

Structures

Serial Processing

 With the earliest computers, from the late 1940s to the mid-1950s, the programmer

interacted directly with the computer hardware; there was no OS.

2

 These computers were run from a console consisting of display lights, toggle switches,

some form of input device, and a printer.

 The users have access to computer in series.

 If the programmer wish to execute a program, they need to follow certain steps,

 Programs in machine code were loaded via the input device (e.g., a card reader).

 If an error halted the program, the error condition was indicated by the lights.

 If the program proceeded to a normal completion, the output appeared on the printer.

 Two main problems:

 Scheduling: A user could sign up for a block of time in multiples of a half hour or

so. A user might sign up for an hour and finish in 45 minutes; this would result in

wasted computer processing time. On the other hand, the user might run into

problems, not finish in the allotted time, and be forced to stop before resolving the

problem.

 Setup time: A single program, called a job, could involve loading the compiler plus

the high-level language program (source program) into memory, saving the compiled

program (object program), and then loading and linking together the object program

and common functions. Each of these steps could involve mounting or dismounting

tapes or setting up card decks. If an error occurred, the hapless user typically had to

go back to the beginning of the setup sequence. Thus, a considerable amount of time

was spent just in setting up the program to run.

Simple Batch

 Early computers were very expensive, and wasted time, so the concept of batch OS was

developed

 Monitor
 The central idea behind the simple batch-processing scheme is the use of a piece of

software known as the monitor. With this type of OS, the user no longer has direct

access to the processor.

 Instead, the user submits the job on cards or tape to a computer operator, who batches

the jobs together sequentially and places the entire batch on an input device, for use

by the monitor.

 Each program is constructed to branch back to the monitor when it completes

processing, at which point the monitor automatically begins loading the next program.

 Two view points

 Monitor point of view: The monitor controls the sequence of events. For this to be

so, much of the monitor must always be in main memory and available for execution.

That portion is referred to as the resident monitor. The rest of the monitor consists of

utilities and common functions that are loaded as subroutines to the user program at

the beginning of any job that requires them. The monitor reads in jobs one at a time

from the input device (typically a card reader or magnetic tape drive). As it is read in,

the current job is placed in the user program area, and control is passed to this job.

When the job is completed, it returns control to the monitor, which immediately reads

in the next job. The results of each job are sent to an output device, such as a printer,

for delivery to the user.

3

 Processor point of view: At a certain point, the processor is executing instructions

from the portion of main memory containing the monitor. These instructions cause the

next job to be read into another portion of main memory. Once a job has been read in,

the processor will encounter a branch instruction in the monitor that instructs the

processor to continue execution at the start of the user program. The processor will

then execute the instructions in the user program until it encounters an ending or error

condition. Either event causes the processor to fetch its next instruction from the

monitor program.

 The monitor performs a scheduling function: A batch of jobs is queued up, and jobs are

executed as rapidly as possible, with no intervening idle time. The monitor improves job

setup time using job control language (JCL).

Multi-programmed

 A single program cannot, in general, keep either the CPU or the I/O devices busy at all

times. Single users frequently have multiple programs running.

 Multiprogramming increases CPU utilization by organizing jobs (code and data) so that

the CPU always has one to execute.

 The idea is as follows: The operating system keeps several jobs in memory

simultaneously. Since, in general, main memory is too small to accommodate all jobs;

the jobs are kept initially on the disk in the job pool. This pool consists of all processes

residing on disk awaiting allocation of main memory.

 The set of jobs in memory can be a subset of the jobs kept in the job pool. The operating

system picks and begins to execute one of the jobs in memory. Eventually, the job may

have to wait for some task, such as an I/O operation, to complete.

 In a non-multiprogrammed system, the CPU would sit idle. In a multiprogrammed

system, the operating system simply switches to, and executes, another job. When that

job needs to wait, the CPU switches to another job, and so on.

 Eventually, the first job finishes waiting and gets the CPU back. As long as at least one

job needs to execute, the CPU is never idle.

4

 This idea is common in other life situations. A lawyer does not work for only one client

at a time, for example. While one case is waiting to go to trial or have papers typed, the

lawyer can work on another case. If he has enough clients, the lawyer will never be idle

for lack of work.

Time-shared

 Time sharing (or multitasking) is a logical extension of multiprogramming. In time-

sharing systems, the CPU executes multiple jobs by switching among them, but the

switches occur so frequently that the users can interact with each program while it is

running.

 Time sharing requires an interactive computer system, which provides direct

communication between the user and the system. The user gives instructions to the

operating system or to a program directly, using an input device such as a keyboard,

mouse, touch pad, or touch screen, and waits for immediate results on an output device.

Accordingly, the response time should be short—typically less than one second.

 A time-shared operating system allows many users to share the computer simultaneously.

Since each action or command in a time-shared system tends to be short, only a little

CPU time is needed for each user. As the system switches rapidly from one user to the

next, each user is given the impression that the entire computer system is dedicated to his

use, even though it is being shared among many users.

 A time-shared operating system uses CPU scheduling and multiprogramming to provide

each user with a small portion of a time-shared computer.

Personal Computer

 A Personal computer is a small relatively in expensive computer designed for an

individual user. These are based on microprocessor technology that enables

manufactures to put an entire CPU on one chip.

 The goal is to maximize the work (or play) that the user is performing with some

attention paid to performance and none paid to resource utilization.

 . Personal computers are used for word processing, accounting, running spreadsheets,

database management applications, games etc.,

Parallel Systems

 Also known as parallel systems or multicore systems.

 Definition: Systems having two or more processors in close communication, sharing the

computer bus and sometimes the clock, memory, and peripheral devices.

 Advantages

 Increased throughput. By increasing the number of processors, we expect to get

more work done in less time. When multiple processors cooperate on a task, a

certain amount of overhead is incurred in keeping all the parts working correctly.

This overhead, plus contention for shared resources, lowers the expected gain from

additional processors.

 Economy of scale. Multiprocessor systems can cost less than equivalent multiple

single-processor systems, because they can share peripherals, mass storage, and

5

power supplies.

 Increased reliability. If functions can be distributed properly among several

processors, then the failure of one processor will not halt them system, only slow it

down. If we have ten processors and one fails, then each of the remaining nine

processors can pick up a share of the work of the failed processor. Thus, the entire

system runs only 10 percent slower, rather than failing altogether. Increased

reliability of a computer system is crucial in many applications. The ability to

continue providing service proportional to the level of surviving hardware is called

graceful degradation. Some systems go beyond graceful degradation and are called

fault tolerant, because they can suffer a failure of any single component and still

continue operation.

 Two Types Multiple-Processor Systems

 Asymmetric multiprocessing: each processor is assigned a specific task. A boss

processor controls the system; the other processors either look to the boss for

instruction or have predefined tasks. This scheme defines a boss–worker

relationship. The boss processor schedules and allocates work to the worker

processors.

 Symmetric multiprocessing (SMP): each processor performs all tasks within the

operating system. SMP means that all processors are peers; no boss–worker

relationship exists between processors.

Distributed Systems

 A distributed system is a collection of physically separate, possibly heterogeneous,

computer systems that are networked to provide users with access to the various

resources that the system maintains.

 Access to a shared resource increases computation speed, functionality, data availability,

and reliability.

 Distributed systems depend on networking for their functionality.

 Networks vary by the

 Protocols used : Most OS support TCP/IP

 Distances between the nodes: LAN, WAN, MAN, PAN

 Transport media: Copper wires, fiber stands & wireless transmissions

 A network operating system is an operating system that provides features such as file

sharing across the network, along with a communication scheme that allows different

6

processes on different computers to exchange messages.

 A distributed operating system provides a less autonomous environment. A distributed

operating system provides a less autonomous environment. The different computers

communicate closely enough to provide the illusion that only a single operating system

controls the network.

 Reasons for building distributed systems

There are four major reasons for building distributed systems,

 Resource Sharing : If a number of different sites (with different capabilities) are

connected to one another, then a user at one site may be able to use the resources

available at another. For example, a user at site A may be using a laser printer

located at site B. Meanwhile, a user at B may access a file that resides at A.

 Computation Speedup: If a particular computation can be partitioned into sub

computations that can run concurrently, then a distributed system allows us to

distribute the sub computations among the various sites. The sub computations can

be run concurrently and thus provide computation speedup.

 Reliability: If one site fails in a distributed system, the remaining sites can continue

operating, giving the system better reliability.

 Communication: When several sites are connected to one another by a

communication network, users at the various sites have the opportunity to exchange

information.

Real-Time Systems

 A real time system is a computer system that requires not only that the computing results

be correct but also they are produced within specified deadline

 A real-time system is used when rigid time requirements have been placed on the

operation of a processor or the flow of data; thus, it is often used as a control device in a

dedicated application.

 Sensors bring data to the computer. The computer must analyze the data and possibly

adjust controls to modify the sensor inputs.

 Systems that control scientific experiments, medical imaging systems, industrial control

systems, and certain display systems are real time systems. Some automobile-engine

fuel-injection systems, home-appliance controllers, and weapon systems are also real-

time systems.

 A real-time system has well-defined, fixed time constraints. Processing must be done

within the defined constraints, or the system will fail. For instance, it would not do for a

robot arm to be instructed to halt after it had smashed into the car it was building.

 Types

It is of 2 types

 Hard real time systems: Has the most strict requirements, guaranteeing that critical

real time tasks be completed within their deadlines. Safety critical systems are

typically hard real time systems

 Soft real time systems: Less restrictive simple provides a critical real time task will

receive priority over other task and that it will retain that priority until it completes.

Operating System services

 An operating system provides an environment for the execution of programs. It

provides certain services to programs and to the users of those programs. These operating

7

system services are provided for the convenience of the programmer, to make the

programming task easier

Operating System Services Those Are Helpful to the User

1. User interface.

 Almost all operating systems have a user interface (UI). This interface can take

several forms.

 One is a command-line interface (CLI), which uses text commands and a method

for entering them (say, a keyboard for typing in commands in a specific format with

specific options).

 Another is a batch interface, in which commands and directives to control those

commands are entered into files, and those files are executed.

 Most commonly, a graphical user interface (GUI) is used. Here, the interface is a

window system with a pointing device to direct I/O, choose from menus, and make

selections and a keyboard to enter text.

 Some systems provide two or all three of these variations.

2. Program execution.

 The system must be able to load a program into memory and to run that program.

 The program must be able to end its execution, either normally or abnormally

(indicating error).

3. I/O operations.

 A running program may require I/O, which may involve a file or an I/O device.

 For specific devices, special functions may be desired (such as recording to a CD or

DVD drive or blanking a display screen).

 For efficiency and protection, users usually cannot control I/O devices directly.

 Therefore, the operating system must provide a means to do I/O.

4. File-system manipulation

 Programs need to read and write files and directories.

 Many operating systems provide a variety of file systems, sometimes to allow

personal choice and sometimes to provide specific features or performance

characteristics.

5. Communications.

 There are many circumstances in which one process needs to exchange information

with another process.

 Such communication may occur between processes that are executing on the same

computer or different computer systems using Shared memory or Message passing

techniques.

6. Error detection.

 The operating system needs to be detecting and correcting errors constantly.

 Errors may occur in

8

 CPU and memory hardware (such as a memory error or a power failure),

 I/O devices (such as a parity error on disk, a connection failure on a network, or

lack of paper in the printer),

 User program (such as an arithmetic overflow, an attempt to access an illegal

memory location, or a too-great use of CPU time).

 For each type of error, the operating system should take the appropriate action to

ensure correct and consistent computing.

Operating System for Efficient Operation of the System Itself

1. Resource allocation.

 When there are multiple users or multiple jobs running at the same time, resources

must be allocated to each of them.

 The operating system manages many different types of resources such as CPU

cycles, main memory, and file storage.

2. Accounting.

 We want to keep track of which users use how much and what kinds of computer

resources. This record keeping may be used for accounting (so that users can be

billed) or simply for accumulating usage statistics.

 Usage statistics may be a valuable tool for researchers who wish to reconfigure the

system to improve computing services.

3. Protection and security.

 The owners of information stored in a multiuser or networked computer system may

want to control use of that information.

 Protection involves ensuring that all access to system resources is controlled.

 Security starts with requiring each user to authenticate himself or herself to the

system, usually by means of a password, to gain access to system resources. It

extends to defending external I/O devices.

System Calls

Definition: System calls provide an interface to the services made available by an operating

system. These calls are generally available as routines written in C and C++, although certain

low-level tasks (for example, tasks where hardware must be accessed directly) may have to

be written using assembly-language instructions.

Example To Illustrate How System Calls Are Used: Writing A Simple Program To

Read Data From One File And Copy Them To Another File.

 The first input that the program will need is the names of the two files: the input file and

the output file.

 These names can be specified in many ways, depending on the operating-system design.

One approach is for the program to ask the user for the names.

 In an interactive system, this approach will require a sequence of system calls, first to

write a prompting message on the screen and then to read from the keyboard the

9

characters that define the two files. On mouse-based and icon-based systems, a menu of

file names is usually displayed in a window.

 The user can then use the mouse to select the source name, and a window can be opened

for the destination name to be specified. This sequence requires many I/O system calls.

 Once the two file names have been obtained, the program must open the input file and

create the output file. Each of these operations requires another system call.

 Possible error conditions for each operation can require additional system calls. When

the program tries to open the input file, for example, it may find that there is no file of

that name or that the file is protected against access.

 In these cases, the program should print a message on the console (another sequence of

system calls) and then terminate abnormally (another system call).

 If the input file exists, then we must create a new output file. We may find that there is

already an output file with the same name. This situation may cause the program to abort

(a system call), or we may delete the existing file (another system call) and create a new

one (yet another system call).

 Another option, in an interactive system, is to ask the user (via a sequence of system calls

to output the prompting message and to read the response from the terminal) whether to

replace the existing file or to abort the program.

 When both files are set up, we enter a loop that reads from the input file (a system call)

and writes to the output file (another system call). Each read and write must return status

information regarding various possible error conditions.

 On input, the program may find that the end of the file has been reached or that there was

a hardware failure in the read (such as a parity error).

 The write operation may encounter various errors; depending on the output device (for

example, no more disk space).

 Finally, after the entire file is copied, the program may close both files (another system

call), write a message to the console or window (more system calls), and finally

terminate normally (the final system call).

10

Application Programming Interface (API)

 The API specifies a set of functions that are available to an application programmer,

including the parameters that are passed to each function and the return values the

programmer can expect.

 Three of the most common APIs available to application programmers are the Windows

API for Windows systems, the POSIX API for POSIX-based systems (which include

virtually all versions of UNIX, Linux, and Mac OSX), and the Java API for programs

that run on the Java virtual machine.

 The functions that make up an API typically invoke the actual system calls on behalf of

the application programmer.

System call Interface

 For most programming languages, the run-time support system (a set of functions built

into libraries included with a compiler) provides a system call interface that serves as

the link to system calls made available by the operating system.

 The system-call interface intercepts function calls in the API and invokes the necessary

system calls within the operating system. Typically, a number is associated with each

system call, and the system-call interface maintains a table indexed according to these

numbers.

 The system call interface then invokes the intended system call in the operating-system

kernel and returns the status of the system call and any return values.

 The caller need know nothing about how the system call is implemented or what it does

during execution. Rather, the caller need only obey the API and understand what the

operating system will do as a result of the execution of that system call.

 Thus, most of the details of the operating-system interface are hidden from the

programmer by the API and are managed by the run-time support library.

Types of System Calls

System calls can be grouped roughly into six major categories:

1. Process control

11

a. end, abort

 A running program needs to be able to halt its execution either normally (end ())

or abnormally (abort ()).

 When a running program terminates abnormally, a dump is written to the disk and

examined by- a system program designed to aid the programmer in finding and

correcting errors, or bugs—to determine the cause of the problem.

 In Command line interfaces, it is it is assumed that the user will issue an

appropriate command to respond to any error.

 In a GUI system, a pop-up window might alert the user to the error and ask for

guidance.

 In a batch system, the command interpreter usually terminates the entire job and

continues with the next job. Some systems use Control cards which determine

severity of errors and determine which action to be taken.

b. load, execute

 A process or job executing one program may want to load () and execute ()

another program.

 This feature allows the command interpreter to execute a program as directed by,

for example, a user command, the click of a mouse, or a batch command.

c. create process, terminate process

 An interesting question is where to return control when the loaded program

terminates. This question is related to whether the existing program is lost, saved,

or allowed to continue execution concurrently with the new program.

 If control returns to the existing program when the new program terminates, we

must save the memory image of the existing program; thus, we have effectively

created a mechanism for one program to call another program.

 If both programs continue concurrently, we have created a new job or process to

be multiprogrammed. The system call for this purpose is create process or submit

job.

 We may also want to terminate a job or process that we created (terminate

process) if we find that it is incorrect or is no longer needed.

d. get process attributes, set process attributes

 If we create a new job or process, or perhaps even a set of jobs or processes, we

should be able to control its execution.

 This control requires the ability to determine and reset the attributes of a job or

process, including the job’s priority, its maximum allowable execution time, and

so on using get process attributes() and set process attributes().

e. wait for time

f. wait event, signal event

 Having created new jobs or processes, we may need to wait for them to finish

their execution. We may want to wait for a certain amount of time to pass (wait

time ()). More probably, we will want to wait for a specific event to occur (wait

event ()).

 The jobs or processes should then signal when that event has occurred (signal

event ()).

12

g. allocate and free memory

 Most OS allocate memory for programs and releases it after completion.

2. File management

a. create file, delete file

b. open, close

c. read, write, reposition

d. get file attributes, set file attributes

 We first need to be able to create () and delete () files. Either system call requires

the name of the file and perhaps some of the file’s attributes.

 Once the file is created, we need to open () it and to use it.

 We may also read (), write (), or reposition () (rewind or skip to the end of the

file, for example).

 Finally, we need to close () the file, indicating that we are no longer using it.

 For either files or directories, we need to be able to determine the values of

various attributes and perhaps to reset them if necessary.

 File attributes include the file name, file type, protection codes, accounting

information, and so on. At least two system calls, get file attributes () and set file

attributes (), are required for this function.

 Some operating systems provide many more calls, such as calls for file move ()

and copy().

3. Device management

a. request device, release device

b. read, write, reposition

c. get device attributes, set device attributes

d. logically attach or detach devices

 The various resources controlled by the operating system can be thought of as

devices. Some of these devices are physical devices (for example, disk drives),

while others can be thought of as abstract or virtual devices (for example, files).

 A system with multiple users may require us to first request () a device, to ensure

exclusive use of it. After we are finished with the device, we release () it.

 These functions are similar to the open () and close () system calls for files.

 Once the device has been requested (and allocated to us), we can read(), write(),

and (possibly) reposition() the device,

 Many OS including UNIX merge file and devices structures into one and use

same set of system calls

4. Information maintenance

a. get time or date, set time or date

b. get system data, set system data

c. get process, file, or device attributes

d. set process, file, or device attributes

 Many system calls exist simply for the purpose of transferring information

13

between the user program and the operating system.

 For example, most systems have a system call to return the current time () and

date (). Other system calls may return information about the system, such as the

number of current users, the version number of the operating system, the amount

of free memory or disk space, and so on.

 In addition, the operating system keeps information about all its processes, and

system calls are used to access this information. Generally, calls are also used to

reset the process information (get process attributes () and set process attributes

()).

5. Communications

a. create, delete communication connection

b. send, receive messages

c. transfer status information

d. attach or detach remote devices

 There are two common models of inter process communication:

a) The message passing model

b) The shared-memory model.

a) The Message Passing Model

 In the message-passing model, the communicating processes exchange messages

with one another to transfer information.

 Messages can be exchanged between the processes either directly or indirectly

through a common mailbox. Before communication can take place, a connection must

be opened. The name of the other communicator must be known.

 Each computer in a network has a host name by which it is commonly known. A host

also has a network identifier, such as an IP address. Similarly, each process has a

process name, and this name is translated into an identifier by which the operating

system can refer to the process.

 The get hostid () and get processid () system calls do this translation. The identifiers

are then passed to the general purpose open () and close () calls provided by the file

system or to specific open connection () and close connection () system calls,

depending on the system’s model of communication.

 The recipient process usually must give its permission for communication to take

place with an accept connection () call. Most processes that will be receiving

connections are special-purpose daemons, which are system programs provided for

that purpose.

 They execute a wait for connection () call and are awakened when a connection is

made.

 The source of the communication, known as the client, and the receiving daemon,

known as a server, then exchange messages by using read message() and write

message() system calls. The close connection () call terminates the communication.

b) Shared-Memory Model

 In the shared-memory model, processes use shared memory create () and shared

14

memory attach() system calls to create and gain access to regions of memory owned

by other processes.

 Normally, the operating system tries to prevent one process from accessing another

process’s memory.

 Shared memory requires that two or more processes agree to remove this restriction.

They can then exchange information by reading and writing data in the shared areas.

 The form of the data is determined by the processes and is not under the operating

system’s control. The processes are also responsible for ensuring that they are not

writing to the same location simultaneously.

Comparison of both the models

 Message passing is useful for exchanging smaller amounts of data, because no

conflicts need be avoided. It is also easier to implement than is shared memory for

inter computer communication.

 Shared memory allows maximum speed and convenience of communication, since it

can be done at memory transfer speeds when it takes place within a computer.

Problems exist, however, in the areas of protection and synchronization between the

processes sharing memory.

6. Protection

a. set permission, get permission

b. allow user, deny user

 System calls providing protection include set permission () and get permission (),

which manipulate the permission settings of resources such as files and disks.

 The allow user () and deny user () system calls specify whether particular users

can—or cannot—be allowed access to certain resources.

