T	00	00	A .
D	711	h 7	6-A
3.	40	04	0-77

(Pages: 2)

Name	***************************************

Keg. No....

THIRD SEMESTER B.TECH. (ENGINEERING) DEGREE EXAMINATION, OCTOBER 2011

CS/IT 09 304/PTCS 09 303—DISCRETE COMPUTATIONAL STRUCTURES

(2009 admissions)

Time: Three Hours

Maximum: 70 Marks

Part A

Answer all questions.

- 1. Explain contrapositive.
- 2. Explain equivalence relation.
- Explain inverse functions.
- 4. Define Hamming code.
- 5. Solve following recurrence relations. Assume n is even:

$$T(n) = T(n-2) + 1$$
, $T(0) = 1$.

 $(5 \times 2 = 10 \text{ marks})$

Part B

Answer any four questions.

- 6. Prove that $-(p \wedge q) \Leftrightarrow -p \vee -q$.
- 7. Find the number of functions from m-element set to an n-element set.
- 8. Draw the Hasse diagram for the poset (A, (subset)), where A denotes the power set of set (a, b, c).
- 9. Prove that G is a abelian group if and only if $(a \cdot b)^2 = a^2 \cdot b^2$ for all $a, b \in G$.
- 10. Show that $Z_7 = \{(1, 2, 3, 4, 5, 6), * \text{ mod } 7\}$ is cyclic group.
- 11. Solve f(n) = f(n-1); f(0) = 1.

 $(4 \times 5 = 20 \text{ marks})$

Part C

Answer section (a) or section (b).

12. (a) Show that any proposition e can be transformed into CNF.

Or

(b) Find disjunctive normal form of the following formula:

$$(P \wedge Q) \vee (7P \wedge Q) \vee (Q \wedge R).$$

Turn over