OR

Roll No

EI - 603

B.E. VI Semester

Examination, June 2015

Digital Signal Processing

Time: Three Hours

Maximum Marks: 70

Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.

- ii) All parts of each questions are to be attempted at one place.
- iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.
- 1. a) What is zero padding? Why it is used?
 - b) Write the properties of DFT.
 - c) Given a sequence x(n) for $0 \le n \le 3$, where x(0) = 4, x(1) = 3, x(2) = 2 and x(3) = 1, evaluate its DFT X(k).
 - d) If $x_1(n)$ and $x_2(n)$ are periodic with period N with DFS coefficients $X_1(k)$ and $X_2(k)$, respectively. Show that the sequence with DFS coefficients $X(k) = X_1(k) X_2(k)$ is equal to the periodic convolution of $x_1(n)$ and $x_2(n)$ i.e.

$$x(n) = \sum_{k=0}^{N-1} x_1(k)x_2(n-k)$$

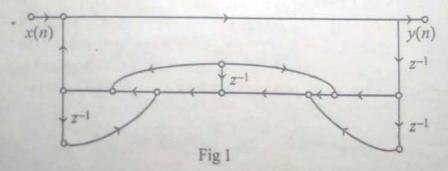
Given the two sequence of length 4 are:

$$x(n) = \{0, 1, 2, 3\}$$

$$h(n) = \{2,1,1,2\}$$

Find the circular convolution

- 2. a) What are the advantage in direct form I structure when compared to direct form II structure?
 - b) Define canonic and non-canonic form realizations.
 - c) Find the digital network in direct form II for the system described by the difference equation.


$$y(n) = x(n) + 0.5x(n-1) + 0.4x(n-2) - 0.6y(n-1) - 0.7y(n-2)$$

d) Determine the cascade form realization of the system governed by the transfer function.

$$H(z) = \frac{\left(1+z^{-1}\right)\left(1-5z^{-1}-z^{-2}\right)}{\left(1+2z^{-1}+z^{-2}\right)\left(1+z^{-1}+z^{-2}\right)}$$

OR

The signal flow graph of fig.1 represents a linear difference equation with constant coefficients. Determine the difference equation that relates the output y(n) to the input x(n).

PTO

- 3. a) List the characteristics of FIR filters designed using windows.
 - b) What are the quantization errors due to finite word length registers in digital filters.
 - c) Distinguish between FIR and IIR filters.
 - d) Prove that an FIR filter has linear phase if the unit sample response satisfies the condition

$$h(n) = \pm h(M-1-n), n = 0,1, \dots M-1.$$

Determine the system function of the IIR digital filter for the analog transfer function. $H_a(s) = \frac{10}{(s^2 + 7s + 10)}$ With T = 0.2 second. Using impulse invariance method.

- 4. a) What are the Twiddle Factors of DFT?
 - b) What are the applications of FFT algorithm.
 - c) Draw and explain the basic butterfly diagram of DIT radix - 2 FFT.
 - d) Derive and draw the 8 point FFT DIT butterfly structure.

 OR

 Explain decimation in frequency FFT algorithm.
- 5. a) What is a random process said to be mean ergodic?
 - b) What is known as periodogram?
 - c) A random variable x has a Probability Density Function.

$$P_x(x) = \begin{cases} \frac{1}{q}, & 0 \le x \le q \\ 0, & otherwise \end{cases}$$

Find its mean, mean square and variance.

d) A stationary discrete-time random process is given by $x(nT) = E\{x(nT)\} + x_0(nT)$.

Where $x_0(nT)$ is a zero - mean process.

Show that $r_x(0) = \mathbb{E}\{x^2(nT)\}.$

OR

A random variable x has a probability (Rayleigh) distribution function given by.

$$P_x(x) = \begin{cases} xe^{-x^2/2a^2}, 0 \le x \le \infty \\ 0, \text{ otherwise} \end{cases}$$

Show that

$$E\{x^2\} = 2a^2$$
.
