SE CMPH

Sem (Rev ~

DLDA

PR-Oct. (1) 157 Con.6565-11.

MP-4105

6

6

4

4

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

16/12/2011

- (2) Attempt any four questions out of remaining six questions.
- 1. (a) Convert (650-17)₈ into decimal, binary and hex.
 - (b) Explain ALU with the help of block diagram.
 - (c) State and explain distributive and associative law for boolean equation.
 - (d) Determine the truth table for the circuit given below-

2.	(a) (b)	Design 16 : 1 MUX using 4 : 1 MUX. Simplify using K-map, obtain SOP equation and realise only by using NAND gates. $f(A, B, C, D) = \pi M (1, 2, 3, 8, 9, 10, 11, 14) + d (7, 15)$	10 10
3.	(a)	Using Quine McCluskey method, determine the minimal SOP form for : F(A = B = C = D = E = G) = sm(20, 28, 38, 39, 52, 60, 102, 103, 107)	10
	(b)	Design a BCD adder using 4-bit binary adders and explain.	10
4.	(a) (b)	What is shift register? Explain 4 bit bidirectional shift register. Design a MOD-6 synchronous up-counter and explain its operation.	10 10
5.	[.] (a)	Implement the following expression using 8 : 1 MUX.	10
	(b)	$f(A, B, C, D) = \varepsilon m(0, 1, 3, 6, 9, 11, 12, 13, 15).$ Explain with a neat diagram 2 input TTL NAND gate in detail.	10
6.	(a)	Convert T flip-flop to D flip-flop.	10
	(b)	Compare the different logic families with respect to the following parameters : Fan in, Fan out, Noise margin, speed and power dissipation.	10
7.	Write short notes on :		20
		(a) Decade Counters	
		(b) Demorgan's theorems	
		(c) Race around condition.	