

CS/MCA/SEM-1/M(MCA)-101/2012-13

2012

DISCRETE MATHEMATICAL STRUCTURES

Time Allotted: 3 Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any ten of the following :

$$
10 \times 1=10
$$

i) Out of the following the singleton set is
a) $A=\{x: 3 x-2=0, x \in Q\}$
b) $\quad B=\left\{x: x^{2}-1=0, x \in R\right\}$
c) $C=\{x: 30 x-59=0, x \in N\}$
d) $\quad D=\left\{x: x^{2}-1=0, x \in Z\right\}$
where Q, R, N, Z is the set of all rational number, real number, natural number and integers respectively.
ii) If $A, B \& C$ are any three arbitrary sets, then $A-(B \cap C)$ is

a) $\quad(A-B) \cup(A-C)$
b) $\quad(A-B) \cap(A-C)$
c) $\quad(A-B) \cap(C-A)$
d) $(B-A) \cup(A-C)$.
iii) The number of arrangements of 25 objects where 7 are of the first kind, 2 are of the second kind, 3 are of the third kind and 4 are of the fourth kind is given by
a) $\frac{25!}{7!2!3!4!}$
b) $\frac{25!}{7!2!}$
c) $\frac{25!}{3!4!}$
d) none of these.
iv) Out of the following statements the formula for tautology is
a) $\quad(p \vee q) \rightarrow q$
b) $\quad p \vee(q \rightarrow p)$
c) $\quad p \vee(p \rightarrow q)$
d) $\quad p \rightarrow(p \rightarrow q)$.
v) The solution of the recurrence relation $a_{r}-7 a_{r-1}+10 a_{r-2}=0$ given $a_{0}=0, a_{1}=3$ is
a) $5^{-r}-2^{r}$
b) $5^{r}+2^{r}$
c) $5^{r}-2^{r}$
d) none of these.
vi) The type of the grammar, which consists of the productions $s \rightarrow a A, A \rightarrow a A B, B \rightarrow b, A \rightarrow a$ is
a) Type-0
b) Type-1
c) Type-2
d) Type-3.
vii) Let L be a language given by $L=\left\{a^{n} b^{n}: n \geq 0\right\}$, then L^{2} is equal to
a) $\quad\left\{a^{n} b^{n} a^{m} b^{m}: n \geq 0, m \geq 0\right\}$
b) $\quad\left\{a^{n} b^{n}: n \geq 0\right\}$
c) $\quad\left\{a^{n} b^{n} a^{n} b^{n}: n \geq 0\right\}$
d) none of these.
viii) The coefficient of X^{25} in $\left(X^{3}+X^{4}+X^{5}+\ldots\right)^{5}$ is
a) $C(9,5)$
b) $C(5,9)$
c) $\quad C(5,5)$
d) $\quad C(9,9)$.
ix) For the mapping $g:[-3,2] \rightarrow R \quad$ defined by $g(x)=3 x+4$ for any $x \in[-3,2]$ then image set of g is
a) $[-5,10]$
b) $[0,10]$
c) $[2,-3]$
d) none of these.
x) A spanning tree of a connected graph contains
a) all the vertices of the graph
b) all the vertices and edges of the graph
c) a few vertices of the graph
d) none of these.
xi) If a binary tree has 20 pendant vertices then the number of internal vertices of the tree is
a) 20
b) 21
c) 23
d) 19 .

This is a
a) Poset
c) Lattice
b) Toset
d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. Define adjacency matrix of a simple graph $G=(V, E)$. Write down the adjacency matrix for the following undirected graph :

3. By using Principle of Mathematical Induction, prove that $4^{2 n+1}+3^{n+2}$ is an integer multiple of 13 for all positive integers n.
4. Let $A=\{x \in R: x \neq 2\}$ \& $B=\{x \in R: x \neq 1\}$, and let the two functions $\quad f: A \rightarrow B \quad \& \quad g: B \rightarrow A \quad$ are defined by $f(x)=\frac{x}{x-2}, \forall x \in A$ and $g(x)=\frac{2 x}{x-1}, \forall x \in B$, then find $f_{o} g$. Are the two functions f and g invertible?

5. Over the alphabet $\sum=\{a, b\}$ design a DFA whichaceepts the language $L=\{w: w$ has both an even number of a is and an even number of b 's.
6. Find an explicit formula for the sequence defined by $a_{n}=a_{n-1}+4 \quad \forall n \geq 2$ with $a_{1}=2 \ldots$.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $\quad 3 \times 15=45$
7. a) Determine the intersection of the following two fuzzy sets :

$$
\begin{aligned}
& A=\left\{\frac{4}{01}, \frac{6}{0 \cdot 5}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 7}\right\} \text { and } \\
& B=\left\{\frac{0}{0 \cdot 4}, \frac{2}{0 \cdot 6}, \frac{4}{1}, \frac{6}{1}, \frac{8}{0 \cdot 6}, \frac{10}{0 \cdot 5}\right\} .
\end{aligned}
$$

b) For each of the following mappings determine whether it is (i) injective, (ii) surjective. Find the inverse mapping of the mapping which is bijective.
$K: R \rightarrow R$ defined by $k(x)=\left\{\begin{array}{l}x^{2}-1, \quad x \geq 0 \\ -x^{2}-1, \quad x<0\end{array}\right.$
c) Examine if the following graphs are isomorphic :

$$
3+7+5
$$

8. a) Solve the following recurrence relation using generating function :

$$
a_{n}-9 a_{n-1}+20 a_{n-2}=0 \text { for } n \geq 2 \text { and } a_{0}=-3, a_{1}=-10
$$

CS/MCA/SEM-1/M(MCA)-101/2012-13
b) Show that $n^{2}>2 n+1$ for $n \geq 3$ using mathematical induction.
c) Show that $(p \vee q) \wedge(\neg p \wedge \neg q)$ is a contradiction.

$$
7+4+4
$$

9. a) Write DNF of the following statement :

$$
\neg\{\neg(p \leftrightarrow q) \wedge r\}
$$

b) Verify whether the argument given below is valid or not : All mammals are animals. Some mammals are twolegged. Therefore, some animals are two-legged.
c) Prove the following equivalence :

$$
\neg p \wedge q \Leftrightarrow \neg(p \vee(\neg p \wedge q))
$$

$$
5+5+5
$$

10. a) Find by Prim's algorithm a spanning tree with minimum weight from the graph given below. Also calculate total weight of spanning tree :

b) Prove that a connected graph n with $n-1$ vertices and edges is a tree.
c) Determine the value of n if $4 \times{ }^{n} P_{3}={ }^{n+1} P_{3} . \quad 6+6+3$
11. a) Prove that in a bounded distributive lattice ($\mathrm{L}, \cap, \mathrm{U}$) an element cannot have more than one complement.
b) Find the sum of all four digits for even numbers that can be made with the digits $0,1,2,3,5,6 \& 8$.

UResh
c) Define Mealy and Moore machine. Constructea Moore machine from the following Mealy machine:

	Next State			
Present State	$a=0$		$a=1$	
	State	Output	State	Output
s_{0}	s_{0}	1	s_{1}	0
s_{1}	s_{3}	1	s_{3}	1
s_{2}	s_{1}	1	s_{4}	1
s_{3}	s_{2}	0	s_{0}	1

$$
4+6+5
$$

