B. Tech. Degree IV Semester Examination April 2014

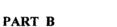
EE 1402 DIGITAL ELECTRONICS

(2012 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A (Answer ALL questions)


 $(8 \times 5 = 40)$

I. Verify the following expression: (a)

(i)
$$(X \oplus Y) \odot (X + Y) = \overline{X} + \overline{Y}$$

(ii)
$$\frac{}{A\overline{B} + ABC} + A(B + A\overline{B}) = 0$$

- What do you mean by self complimenting codes? Give examples. (b)
- (c) Design and implement half subtractor using NAND gate.
- Explain the working of monostable multivibrator using logic gates. (d)
- (e) Differentiate PLA and PAL.
- Explain the working of a 3 bit SISO shift register. **(f)**
- Explain fan in and fan out. (g)
- Explain 2 input CMOS NOR gate. (h)

 $(4 \times 15 = 60)$

(5)

(10)

- (10)II. Reduce f(A,B,C,D) = IIM(2,8,9,10,11,12,14) + d(3,6,7) and implement the minimal (a) expression using universal gates.
 - Design a 3 bit binary to gray code converter using gates. (b)

- III. Convert the following:
 - $(i) (1762.46)_{g} = ($
 - (ii) $(C64D.39E)_{16} = ($
 - $(iii) (984.143)_{10} = ()_8$

 - (iv) (1110110011.10110) = (
 - $(v) (1376.64)_{10} = ()_2$
 - Use a multiplexer having three data select input to implement the logic for the function (5) $F = \sum m(0,1,2,3,4,10,11,14,15)$
- IV. (a) Design a full adder circuit using two half adder.

(10)

Design and implement a full subtractor using NAND gates (b)

(5)

٧. Explain look ahead carry adder. (a)

- (8)
- Explain the working of astable multi vibrator using logic gates.

(7)

(P.T.O.)

VI.	(a)	Write notes on EPROM and EEPROM.	(5)
	(b)	Explain the working of universal shift register.	(10)
	•	OR	
VII.	(a)	Realize D flip-flop using JK flip-flop.	(7)
	(b)	Design and set up a Mod 10 synchronous counter using JK flip-flop.	(8)
VIII.	(a)	What is interfacing? Explain how CMOS gate can be interfaced with TTL gate.	(8)
	(b)	Draw and explain the operation of two input TTL NAND gates.	(7)
	` ,	OR	• • • • • • • • • • • • • • • • • • • •
IX.	(a)	Explain ECL, RTL, DTL logic families.	(5)
	(b)	Explain sourcing and sinking current.	(5)
	(c)	Compare CMOS and TTL logic families.	(5)
