(REVISED COURSE)
(3 Hours)

KR-3411
[Total Marks : 80

- Question number I is compulsory.
- Attempt any threcquestions from remaining five questions.
- Figure to the right of the question paper indicate full marks.
- Assume acceleration due gravity value $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- Assume suitable data wherever necessary
- Answers to sub-questions should be grouped together.

1. Solve
a) Find resultant of the force system.

b) A smooth circular cylinder of weight W and radius R rests in a V shape groove whose sides are inclined at angles α and β to the horizontal as shown. Find the reactions R_{A} and R_{B} at the points of contact.
[04]

$$
\begin{aligned}
& \text { alpha }=20 \text { degree } \\
& \text { beta }=60 \text { degree }
\end{aligned}
$$

c) For the block shown in ligure, find the minimum value of P. which will just disturb the equilibrium of the system.

d) A particle moving in the the x direction has an acceleration a $100-4 v^{2} \mathrm{~m} / \mathrm{s}^{\text {: }}$ Determine the time interval and displacement of a particle when speed changes from $1 \mathrm{~m} / \mathrm{sto} .3 \mathrm{~m} / \mathrm{s}$.

Con- 2012
Con. 9042-KR-3411-12.
e) \wedge vertical lift of total mass 750 kg acquires an upward velocity of $3 \mathrm{~m} / \mathrm{s}$ over a distance of tm moving with constant acceleration starting from rest. Calculate the tension in the cable.
2. Solve
a) Replace the system of forces and couples by a single force and locate the point on the x axis through which he line of action of the resultant passes.

$$
\text { missing length }=2 m 4
$$

(b) Two identical! rollers each of weight 500 N and radius r are kept on a right angle frame ABC having negligible weight. Assuming smooth surfaces, find the reactions induced at all contact surfaces.

(c) A body of mass 2 kg is projected upwards from the surface of the ground at $t=0$ with velocity $201 \mathrm{n} / \mathrm{s}$. At the same time another body of mass 2 kg is dropped along the same line from a height of 25 m . If they collide elastically, find the velocities of body' A and B just after collision.
a) Find centroid of the shaded area.

b) A rectangular parallelepiped carries 4 forces as shown in the figure. Reduce the force system to a resultant force applied at the origin and a moment around origin. $\mathrm{OA}=5 \mathrm{~m}$, $O B=2 \mathrm{~m} . O C=4 \mathrm{~m}$.

[06]

c) A spring of stiffness k is placed horizontally and ball of mass m strikes the spring with a velocity v . find the maximum compression of the spring. \quad Take $\mathrm{in}=5 \mathrm{~kg}$. $k=500 \mathrm{~N} / \mathrm{m}, v=3 \mathrm{~m} / \mathrm{s}$.

4. Solve
a. Find the support reactions for the beam loaded and supported as shown in fig. [08]

b) A ball thrown with speed of $12 \mathrm{~m} / \mathrm{s}$ a! an angle of 60° with a building strikes the ground 11.3 m horizontally from the foot of the building as shown. Determine the height of the building [06].

c) In a crank and connecting rod mechanism, the length of crank and the connecting rod are 300 mm and 1200 mm respectively. The crank is rotating at 180 rpm . Find the velocity of piston. when the crank is at an angle of 45° with the horizontal. [06] \Rightarrow Direction of rotation of crank is clockwise

S.Solve

(a) Referring to the truss shown in fig. find
(i) Reactions at D and C (ii) Zero force members (iii)) Forces in members $F E$, and $D C$
by method of sections and (iv) Forces in other members by method of joints \quad and $D C$
[08]

b) A point moves along a path $y=x^{2} / 3$ with a constant speed of $8 \mathrm{~m} / \mathrm{s}$. What are the s and y components of its velocil! when $x=3$? What is the acceleration of the point at this instant?
c) At the position shown in figure, the crank $A B$ has Angular velocity of 3 rad/ sec clockwise. Find the velocity of slider C and the point D at the instant shown. $A B=100 \mathrm{~mm}$.

6. Solve

a) Force $\Gamma=80 i+50 j-60 k$ passes through a point $A(6,2,6)$. Compute its moment about a point $3(8,1,4)$.
b) Assuming the values for $\mu=0.25$ at the floor and 0.3 at the wall and 0.2 , between the blocks. find the minimum value of horizontal force P applied to the lower block that will hold the system in equilibrium.

c) The car ${ }^{\text {minoves }}$ start from Rest of moves velocity is moves in a straight line such that for a short time its velocity is defined by $v=\left(9 t^{2}+2 t\right) \mathrm{m} / \mathrm{s}$. Where t is in seconds. Determine its position and acceleration when $t=3 \mathrm{sec}$.
d) Three $m_{1}, m_{2} \& m_{1}$ of masses $1: 5 \mathrm{Kg} .2 \mathrm{Kg} \& \mid \mathrm{Kg}$ respectively are placed on a rough surface with ! : 0.20 . as shown. If a force F is applied to accelerate the blocks at $3 \mathrm{~m} / \mathrm{s}^{2}$. "hat will be the force that 1.5 Kg block exerts on 2 Kg block? [04]

