

Code No.: 5425/N

FACULTY OF ENGINEERING B.E. 2/4 (EE) II Sem. (New) (Main) Examination, May/June 2012 ELECTRICAL MACHINERY – I

Time: 3 Hours]

[Max. Marks: 75

Note: Answer **all** questions from Part – **A**. Answer **any five** questions from Part – **B**.

	PART-A 25 Ma	rks
1.	Define field energy and co-energy.	2
2m x	The magnetic flux density on the surface of an iron face is 1.6T which is a typical saturation level value for ferromagnetic material. Find the force density on the iron face.	3
3.	State the different types of dc generators with their applications.	3
4.	Define armature reaction in dc generators.	2
5.	Explain the necessity of a starter for a dc shunt motor.	3
6.	Mention the various methods of speed control of a dc series motor.	2
7.	What is meant by an ideal transformer and a practical transformer?	3
8.	Define regulation of a transformer.	2
9.	List out the applications of a stepper motor.	2
10.	Differentiate between core and shell-type transformers.	3
	PART – B 50 Ma	rks
11.	a) Explain about multiply-excited magnetic field systems.b) Describe about the energy in magnetic systems.	5
12.	a) A 75 kW, 250 V compound dc generator has the following data $R_a=0.04\Omega$, $R_{se}=0.004\Omega$, $R_f=100\Omega$, brush contact drop, $V_b=2V$ (1 volt each brush). Compare the generator induced emf when fully loaded in i) long shunt compound and ii) short shunt compound.	5
	b) Explain about the parallel operation of dc generators.	5

Code No.: 5425/N

- 13. a) With a neat schematic diagram, explain the procedure of Hopkinson's test.
 b) Explain four-point starter for starting dc motor.
 5
 14. a) A 3-phase transformer bank consisting of three 1-phase transformers is used to step-down the voltage of a 3-phase, 6600 V transmission line. If the primary line current is 10 A, calculate the secondary line voltage, line current and output kVA for the following connections: a) Y/Δ and b) Δ/Y. The turns ratio is 12.Neglect losses.
 5
 - b) Describe about the variable-reluctance and permanent-magnet stepper motors.
- 15. a) Explain how the Sumpner's test is performed on a single phase transformer.
 - b) The following data were obtained on a 20 kVA, 50 Hz, 2000/200 V distribution transformer :

	Voltage (V)	Current (A)	Power (W)	
OC test with HV open-circuited	200	4	120	
SC test with LV short-circuited	60	10	300	

Draw the approximate equivalent circuit of the transformer referred to the HV and LV sides respectively.

5

5

5

5

5

- 16. a) Derive the emf equation of a generator.
 - b) Explain about Scott connection of a three-phase transformer.
- 17. a) A 240 V dc shunt motor runs on no-load at 800 rpm with no extra resistance in the field or armature circuit, the armature current being 2 A. Calculate the resistance required in series with the shunt winding so that the motor may run at 950 rpm when taking a line current of 30 A. Shunt winding resistance is 160 Ω , armature resistance is 0.4 Ω . Assume that flux is proportional to field current.
 - b) Explain about OC and SC tests of a transformer.

5 5