

Invigilator's Signature : \qquad

CS/ B.Tech (IT)/ SEM-7/ IT-703E/ 2011-12 2011

INFORMATION THEORY \& CODING

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A
 (Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

$$
10 \times 1=10
$$

i) The entropy for a discrete source is a maximum when the output symbols are \qquad probable.
a) reciprocally
b) jointly
c) mutually
d) equally.
ii) Kraft Inequality is represented by which of the following expressions?
a) $\quad \sum_{k=1}^{L} 2^{-n_{k}} \leq 1$
b) $\quad \sum_{k=1}^{L} 2^{-n_{k}=1}$
c) $\quad \sum_{k=1}^{L} 2^{-n} k \geq 1$
d) $\quad \sum_{k=1}^{L} 2^{-n} k \equiv 1$.
iii) The example of VLC is

a) Huffman coding
b) Arithmetic coding
c) Lempel-Ziv coding
d) All of these.
iv) In a code $C=\{0100,1111\}$ which consists of two codewords 0100 and 1111. Then, the Hamming distance between the two codewords would be
a) 1
b) 2
c) 3
d) 4 .
v) Two linear q-ary codes are called equivalent if one can be obtained from the other by one or both of the operations listed below
I) Multiplication of the components by a nonzero scalar.
II) Permutation of the position of the codeword.
a) only I
b) only II
c) both I and II
d) none of these.
vi) To transmit information over noisy channel, which of the following condition must be satisfied ?
a) $\frac{H(X)}{T_{s}} \leq \frac{C}{T_{c}}$
b) $\frac{C}{T_{c}} \leq \frac{H(X)}{T_{s}}$
c) $\frac{C}{T_{c}}<\frac{H(X)}{T_{s}}$
d) $\quad \frac{C}{T_{c}}>\frac{H(X)}{T_{s}}$.
vii) Golay code is a

a) Linear code
b) Cyclic code
c) BCH code
d) Convolutional code.
viii) How many bits are required to encode (FLC) the letters of the English alphabet?
a) 3
b) 4
c) 5
d) 6 .
ix) The coset leader of the code $C=\{0000,1011,1110\}$
is
a) 0010
b) 1001
c) 0111
d) 1100 .
x) The code rate of any coding scheme is always
a) less than unity
b) greater than unity
c) equal to unity
d) none of these.

CS/B.Tech (IT)/SEM-7/IT-703E/2011-12
GROUP - B
(Short Answer Type Questions)

Answer any three of the following. $3 \times 5=15$
2. a) Discuss the interrelationship between Uncertainty and Information.
b) Find self-information of a binary source that emits a sequence of statistically independent symbols. The output is either a 0 with probability p or a 1 with a probability 1-p.
3. What is the need of entropy ? A DMS with source probabilities $\{0.30,0.25,0.20,0.15,0.10\}$, then what will be its entropy?
4. Explain in the following :
a) Singleton Bound
b) Nearest neighbourhood decoding
c) Syndrome
d) Hamming code
e) Code rate.
5. What do you mean by convolutional code? What is a primitive polynomial? What do you mean by the systematic structure of a linear block code?
6. Explain the principle of operation of Meggitt Decoder.

GROUP - C
 (Long Answer Type Questions)

Answer any three of the following. $3 \times 15=45$
7. a) Write applications of linear block code.
b) Consider the following generator matrix over GГ (2)

$$
G=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

i) Generate all possible codewords using this matrix.
ii) Find the parity check matrix, H.
iii) What is the minimum distance of this code?
c) Describe the differences between linear block code and BCH code.
8. a) What are the differences between Cyclic code and Linear block code ? How does cyclic code express by Generator Polynomial expression?
b) How does a convolutional code represent by a set of polynomial expressions ? Explain with examples.
c) What is the importance of Galois field in Linear block coding ?
9. a) Describe Binary Symmetric Channel (BSC) and Discrete Memoryless Channel (DMC) with the help of diagrams. 5
b) Describe the encoding and decoding techniques for Huffman code. What are the limitations of Huffman code?
c) Consider a discrete binary source that emits a sequence of statistically independent symbols. The output is either a 0 with probability p or a 1 with probability $1-p$. Show the entropy of this binary source is

$$
H(X)=-p \log _{2}(p)-(1-p) \log _{2}(1-p)
$$

10. a) Explain the measure of information with reference to probability of occurrence of an event. 5
b) What is entropy of an information source? Find an expression for the same. $3+7$
11. Write short note on Binary Symmetric Channel and Standard Array. $\quad 7+8$

