M 27019

Reg. No. :

Name :

IV Semester B.Tech. Degree (Reg./Sup./Imp. – Including Part Time) Examination, May 2015 (2007 Admn. Onwards) PT2K6/2K6 EC/AEI 404 : SIGNALS AND SYSTEMS

Time: 3 Hours

Max. Marks: 100

PART-A

- 1. 1) Define Unit Impulse and Unit Step Signals and prove that (n) = u(n) u(n 1).
 - 2) State Initial and Final Value Theorem of Laplace Transforms and what are the Laplace transform of $\delta(t)$ and u(t)?
 - 3) Define BIBO stability prove the relation onh(t) for the system to be stable.
 - 4) Check whether the following system is linear or not? Prove it

$$y(n) = \frac{x(n-5) + x(n-7)}{x(n-2) x(n-3)}.$$

- 5) Check whether the causal system with transfer function $h(s) = \frac{1}{s^2}$ is stable.
- 6) What is ROC in Z transforms and what is z transform of sequence $X(n) = a^n u(n)$.
- 7) What is the relation between DTFT and Z transform ? And find DTFT of u(n).
- 8) Define system function. And define shifting property of the discrete time unit impulse function. (8×5=40)

P.T.O.

15

6

M 27019

PART - B

- II. a) Distinguish between the following :
 - i) Continuous time signal and discrete time signal.
 - ii) Unit step and Unit Ramp functions.
 - iii) Periodic and Aperiodic Signals.
 - iv) Deterministic and Random Signals.

OR

- b) If 'E' is the energy of a signal x(t). What is the energy of x(2t) and x(t/2).
- c) Find the natural and total responce of the system described by the differential

equation :
$$\frac{d^2 y(t)}{dt^2} + \frac{6 dy(t)}{dt} + 8y(t) = \frac{dx(t)}{dt} + 2x(t) x(t) = e^{-t}u(t)$$
. The initial conditions are $y(0^+) = 2$, $\frac{d}{dt}y(0^+) = 3$.

III. a) Determine the Fourier Transform for double exponential pulse whose function is given by $x(t) = e^{-2t}$. Also draw its magnitude and phase spectra. Obtain inverse Laplace Transform of the function

$$X(s) = \frac{1}{s^2 + 3s + 2}, ROC: -2 < Re\{s\} < -1.$$
OR
15

b) State and prove the properties of Laplace Transforms. Solve the differential

equation
$$\frac{d^2 y(t)}{dt} + 4 \frac{dy(t)}{dt} + 5y(t) = 5x(t)$$
 and $x(t) = u(t)$. 15

IV. a) Determine the impulse response h(t) of the system given by the differential

equation
$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$$
 with all initial conditions to be zero. 10

b) Obtain DF-I realization of, $\frac{d^2y(t)}{dt^2} + 5\frac{dy(t)}{dt} + 4y(t) = \frac{dx(t)}{dt}$. 5

i)
$$X(t) = u(t - 3) - u(t - 5)$$
, $h(t) = e^{-3t} u(t)$

ii)
$$X(t) = u(t), h(t) = e^{-t}u(t).$$
 15

- V. a) Prove the sampling theorem and explain how the original signal can be reconstructed from the sampled version.
 - b) Find the DTFT for the signa x(n) = u(n-2).

OR

C)	Find the inverse Z transform of $X(z) = 1/2$	/(1 -	$-0.5z^{-1}+0.5z^{-2}$	for ROC Z >1.	7
----	--	-------	------------------------	----------------	---

- d) State and prove the following properties of Z transform.
 - i) Linearity
 - ii) Time shifting
 - iii) Differentiation
 - iv) Correlation.

-3-

8

8