Reg. No.: \qquad
Name: \qquad
IV Semester B.Tech. Degree (Reg./Sup./Imp. - Including Part Time) Examination, May 2015
(2007 Admn. Onwards)

PT2K6/2K6 EC/AEI 404 : SIGNALS AND SYSTEMS

Time: 3 Hours
Max. Marks : 100

PART-A

I. 1) Define Unit Impulse and Unit Step Signals and prove that $(n)=u(n)-u(n-1)$.
2) State Initial and Final Value Theorem of Laplace Transforms and what are the Laplace transform of $\delta(t)$ and $u(t)$?
3) Define BIBO stability prove the relation onh (t) for the system to be stable.
4) Check whether the following system is linear or not? Prove it $y(n)=\frac{x(n-5)+x(n-7)}{x(n-2) x(n-3)}$.
5) Check whether the causal system with transfer function $h(s)=\frac{1}{\mathrm{~s}^{2}}$ is stable.
6) What is ROC in Z transforms and what is z transform of sequence $X(n)=a^{n} u(n)$.
7) What is the relation between DTFT and Z transform ? And find DTFT of $u(n)$.
8) Define system function. And define shifting property of the discrete time unit impulse function.
($8 \times 5=40$)

> PART-B
II. a) Distinguish between the following :
i) Continuous time signal and discrete time signal.
ii) Unit step and Unit Ramp functions.
iii) Periodic and Aperiodic Signals.
iv) Deterministic and Random Signals.

OR

b) If ' E ' is the energy of a signal $x(t)$. What is the energy of $x(2 t)$ and $x(t / 2)$.
c) Find the natural and total responce of the system described by the differential equation: $\frac{d^{2} y(t)}{d t^{2}}+\frac{6 d y(t)}{d t}+8 y(t)=\frac{d x(t)}{d t}+2 x(t) x(t)=e^{-t} u(t)$. The initial conditions are $\mathrm{y}\left(0^{+}\right)=2, \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{y}\left(0^{+}\right)=3$.
III. a) Determine the Fourier Transform for double exponential pulse whose function is given by $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2 t}$. Also draw its magnitude and phase spectra. Obtain inverse Laplace Transform of the function

$$
\begin{equation*}
X(s)=\frac{1}{s^{2}+3 s+2}, \operatorname{ROC}:-2<\operatorname{Re}\{s\}<-1 . \tag{15}
\end{equation*}
$$

OR
b) State and prove the properties of Laplace Transforms. Solve the differential equation $\frac{d^{2} y(t)}{d t}+4 \frac{d y(t)}{d t}+5 y(t)=5 x(t)$ and $x(t)=u(t)$.
IV. a) Determine the impulse response $h(t)$ of the system given by the differential equation $\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=x(t)$ with all initial conditions to be zero. 10
b) Obtain DF-I realization of, $\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+4 y(t)=\frac{d x(t)}{d t}$.
c) Compute and plot the convulation $Y(t)$ of the given signals
i) $X(t)=u(t-3)-u(t-5), h(t)=e^{-3 t} u(t)$
ii) $X(t)=u(t), h(t)=e^{-t} u(t)$. 15
V. a) Prove the sampling theorem and explain how the original signal can be reconstructed from the sampled version.
b) Find the DTFT for the signa $x(n)=u(n-2)$. 7 OR
c) Find the inverse Z transform of $X(z)=1 /\left(1-0.5 z^{-1}+0.5 z^{-2}\right)$ for ROC $|Z|>1 . \quad 7$
d) State and prove the following properties of Z transform.
i) Linearity
ii) Time shifting
iii) Differentiation
iv) Correlation.

