TE sem V (Rev) (ETRX) Electromagnétic Engg.

8745

100

n. 7029–13.			GS-8		
		(3 Hours)	[Total Marl		
N.B	(1) Question no.1 is	compulsory.			
	(2) Attempt any 4 qu	estions from remaining questions,			
	(3) Vector notations	should be used wherever necessary,			
	(4) Assume suitable	data if necessary,			
•					
1.	(a) Explain the conc	ept of displacement current.	5		
	(b) Derive Poisson's	and Laplace's equations.	5		
	(c) Derive wave equ	ations for a conducting medium,	5		
	(d) Explain the conc	ept of retarded potentials.	5		
2.	(a) Derive Maxwell	's equations for static field in integral and po	oint form, 10		
	(b) An electric field	in a medium which is source free is given by	y 10		
	$E=1.5\cos(10^8t-\beta z)\widetilde{ax}$ V/m, where E_m is the amplitude of E, ω is the angular				
	Frequency and ß	is the phase constant. Obtain D, B, H. Assun	ne $\varepsilon_r = 1$, $\mu_r = 1$		
3.	(a) State and prove Pe	oynting theorem. Explain the terms instantar	neous, average and		
	complex Poynting the	eorem	10		
	(b) Define polarization	on of a wave. Explain the types of polarization	on. 10		

(a) Define input impedance of a transmission line. Derive expressions for short and open

	Circuit	impedance of a two wire transmission line.	10
	(b) A trans	smission line of length 0.40λ has a characteristic impedance of 100	Ω and is
	Termi	nated in a load impedance of 200+j180Ω. Find using smith chart	10
	(i) Voltage r	eflection coefficient	
	(ii) Volt	age standing wave ratio	
	(iii) Inpu	t impedance of the line.	
5.	(a) Define uniform plane wave. Explain reflection of uniform plane wave at incidence.		ormal 10
	(b) Explain	pulse broadcasting in dispersive media.	10
5.	(a) Explain	different sources of EMI. What is the need of electromagnetic com	patibility?
	(b) Derive e	xpression for expression for radiation fields of an alternating curre	nt element 10
7.	` •	art	