Fluid Mechanics

Q.No.	Question and Answer	Course Outcome	Knowledge Level			
1	Differentiate Newtonian and Non Newtonian fluid. (A/M 2019)	CO1	K1			
	Fluids that obey Newton's law of viscosity are called Newtonian fluids.	•	•			
	Eg: water, benzene, alcohol, carbon tetrachloride, hexane, ether etc					
	Fluids that do not obey Newton's law of viscosity are called Non-Newtonian fluids.					
	Eg: Toothpaste, paints, jellies, gels, slurries, polymer solutions etc					
2	Define the term viscosity. State Newton's law of viscosity. (A/M 2019)	CO1	K1			
	Viscosity is defined as the property of a fluid which offers resistance to	the move	ment of one			
	layer of fluid over other layer of the fluid. The unit of viscosity in SI is kg/m.s					
	$\mu = \frac{\tau}{\left(\frac{du}{dv}\right)}$					
	$\left(\frac{dn}{dy}\right)$					
	In other words, Shear stress required to produce unit rate of shear strain.					
3	What is a static fluid? State the function of piezometer tube (A/M 2019)	CO2	K1			
	Fluid at rest is referred as static fluid.		-			
	A piezometer is designed to measure static pressures.					
	It is a simple manometer which consists of a glass tube, whose one end is connected as a simple manometer which consists of a glass tube, whose one end is connected as a simple state of the second state of	ected to a	noint where			
	pressure is to be measured and the other end is open to atmosphere		point where			
	List the assumptions made in deriving the Bernoulli's equation and					
4	write the Bernoulli's equation. (A/M 2019)	CO2	K1			
	The flow must be steady, i.e. the fluid properties (velocity, density, etc) at a point cannot change with					
	I he flow must be steady if e, the fluid properties (velocity density etc.) at a poi	int cannot	change white			
	time. The flow must be incompressible – even though pressure varies, the density must re		C			
	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible.		C			
	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$		C			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible.		C			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$	emain con	stant along a			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities	emain con	stant along a			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019)	emain con	stant along a			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another	emain con	stant along a			
	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to	emain con CO3	stant along a K1			
5	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019)	emain con CO3 get same u CO3	stant along a K1 Inits K1			
	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of	emain con CO3 get same u CO3 some var	K1 K1 K1 iables in the			
	 time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding numbers 	emain con CO3 get same u CO3 some var	K1 K1 K1 iables in the			
6	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis	emain con CO3 get same u CO3 some var mber of d	K1 K1 K1 iables in the imensionless			
	 time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) 	emain con CO3 get same u CO3 some var mber of d	K1 K1 K1 iables in the imensionless K1			
6	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. $(P/\rho g)+(V^2/2g)+Z = Constant$ Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along	emain con CO3 get same u CO3 some var mber of d	K1 K1 K1 iables in the imensionless K1			
6	 time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along called as laminar flow. 	emain con CO3 get same u CO3 some var mber of de CO4 a well def	K1 K1 K1 iables in the imensionless K1 fined path is			
6	 time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis? Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along called as laminar flow. E.g.: flow of blood in small veins, flow of oil in bearings, flow in porous m 	emain con CO3 get same t CO3 some var mber of d CO4 a well def edia etc	stant along a K1 iables in the imensionless K1 iables in the imensionless			
6	 time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along called as laminar flow. 	emain con CO3 get same t CO3 some var mber of d CO4 a well def edia etc	stant along a K1 iables in the imensionless K1 Fined path is			
6	time. time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/pg)+(V ² /2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along called as laminar flow. E.g.: flow of blood in small veins, flow of oil in bearings, flow in porous m The flow in which the adjacent layers cross each other and do not move	emain con CO3 get same u CO3 some var mber of d CO4 a well def edia etc along the	stant along a K1 iables in the imensionless K1 iables in the imensionless well define			
6	time. The flow must be incompressible – even though pressure varies, the density must restreamline. Friction by viscous forces has to be negligible. (P/ρg)+(V²/2g)+Z = Constant Mention the need of dimensional analysis. (A/M 2019) Deriving the new relation between physical quantities To convert a unit from one form to another Perform the mathematical operations easily as we use conversion factor in order to What is Rayleigh's method of dimensional analysis? (A/M 2019) Rayleigh's method of dimensional analysis expresses a functional relationship of form of an exponential equation. It doesn't provide any information regarding nurgroups to be obtained as a result of dimension analysis Distinguish between laminar and turbulent flow. (A/M 2019) The flow in which the adjacent layers do not cross each other and move along called as laminar flow. E.g.: flow of blood in small veins, flow of oil in bearings, flow in porous m The flow in which the adjacent layers cross each other and do not move path is called as turbulent flow.	emain con CO3 get same u CO3 some var mber of d CO4 a well def edia etc along the	stant along a K1 iables in the imensionless K1 fined path is well define			

	which is found in open-channel flow. Pipe flow, being confined within closed conduit, does not exert					
	direct atmospheric pressure, but does exert hydraulic pressure on the conduit.Differentiate between venture meter and orifice meter. (A/M 2019)CO5K1					
9			CO5	K1		
	Venturi meter	Orifice me				
	Costlier method to measure the rate flow of fluid	1	re the rate	e of flow		
	through the pipe Requires large space	through the pipe requires relatively smaller sp	000			
	What is the basis difference between a comp		ace.			
10	2019)	Cessor and a pump: (A/M	CO5	K1		
	A pump is a machine that moves a fluid (either liquid	l or gas) from one place to ano	ther.			
	A compressor is a machine that squeezes a gas into	a smaller volume and (often) pumps it	somewhere		
	else at the same time		1	1		
11	State Newton's law of viscosity. (A/M 2018)		CO1	K1		
	'Shear stress' (τ) on a fluid element layer	is directly proportional to the	e 'rate of s	hear strain'		
	(du/dy).					
	$\tau = \mu$ ((du/dy)				
	Where, μ is the constant of proportionality and is call		ocity			
12	What is shear stress? (A/M 2018)	ied as coefficient dynamic vise	CO1	K1		
	Stress developed due to the existence of velo	city gradient, which retards the				
	wall in the direction of flow.					
	The shear stress (τ) is the applied force upon	area (F/A).				
13	What is the importance of using the inclined	d tube manometer? (A/M	CO2	K1		
15	2018)					
	Due to inclination, the distance moved by the hea	vy liquid in the right limb w	ill be mor	e. Thus the		
	manometer is more sensitive.					
		the set of the provide the				
	TÉA					
	h_1 h_2					
	YAD X EEEE	EEE X +				
	Y					
14	How do you obtain dimensions for secondary	quantities? (A/M 2018)	CO3	K1		
	Secondary quantities are obtained by combining					
	(L), Mass (M), Time (T), Temperature (Θ). For example the Velocity(m/s) is a secondary					
	quantity which is obtained by dividing Length (L) and Time (Θ) i.e L/T. Volumetric flow rate					
	(m^3/s) as L^3/T .					
15	Write the dimensions for kinematic viscosity of	of a liquid. (A/M 2018)	CO3	K1		
	Kinematic viscosity is the ratio of dynamic visco		lly denoted	in stokes.		
	Its SI unit is m^2/s and the dimension is L^2T^{-1}					
16	How do you determine porosity? (A/M 2018)		CO4	K1		
	Porosity (ϕ) of a particular porous medium is th	e fraction of the overall vol	ume that i	s occupied		
	by the pores or voids to that of the liquid filled					
	Darcy's equation.					
17	What is minimum fluidization velocity? (A/M	2018)	CO4	K1		
	Fluidization will be considered to begin at the gas ve		the solids g	gravitational		
	force exerted on the particles equals the drag on t	he particles from the rising g	gas. i.e the	bed is just		
	beginning to become fluidized At the point of minim	num fluidization the weight of	the bed just	st equals the		
	pressure drop across the bed.					
18	What is pitot tube? (A/M 2018)		CO5	K1		

	Pitot tube also known as pitot probe is a flow measurement device used to	o measur	e fluid flow			
	velocity. It is widely used to determine the airspeed of an aircraft, water sp					
	measure liquid, air and gas flow velocities in certain industrial applications.	•••• •• ••				
19	What is volumetric efficiency? (A/M 2018)	CO5	K1			
-	Volumetric Efficiency is the ratio of the liquid actually pumped to that which theoretically should be					
	moved on the basis of piston displacement		5			
20	State Newton's law of viscosity. (N/D 2018)	CO1	K1			
	Refer Q.No. 2 for answer					
21	Define the term static fluid. (N/D 2018)	CO2	K1			
	Fluid at rest is referred as static fluid. The pressure at a point in a fluid	at rest is	obtained by			
	hydrostatic law which states that, Rate of increase of pressure in a vertically down	ward dire	ction must be			
	equal to the specific weight of fluid at that point.	Т				
22	State Bernoulli's equation. Write dimensions for each terms involved.	CO4	K1			
	$(P/\rho g)+(V^2/2g)+Z = Constant$					
	$P - ML^{-1}T^{-2}$					
	$\rho - ML^{-3}$					
	$g - MT^{-2}$ V - MT^{-1}					
	$\begin{array}{c} V - MI \\ Z - L \end{array}$					
23	What do you understand by Hydrostatic law? (N/D 2018)	CO2	K1			
	Rate of increase of pressure in a vertically downward direction must be equal to					
	fluid at that point.	une speer				
	$Z = \frac{p}{\rho \times g}.$					
	$\rho \times g$					
24	Define the term similitude. (N/D 2018)	CO3	K1			
	The similarity between model and prototype is called similitude.		1			
	In other words, Principles which are used in the design and interpretation of labor	•	^			
	"model" systems to predict the behavior of large-scale ("field") systems is known	n as simili				
25	Mention the significance of dimensional analysis. (N/D 2018)	CO3	K1			
	Relationship involving dimensionless variables is independent of the size or scale					
	translation of information directly from laboratory models to large-scale equipmer	it or plant	operations is			
	quite easy.					
	The number of dimensionless groups is invariably less than the number of original the machine. Thus the model of a given system or					
	the problem. Thus the relations that define the behavior of a given system ar expressed in terms of the dimensionless variables.	e much s	simpler when			
26		CO4	K1			
20	Differentiate pipes with tubes. (N/D 2018) Tubes can come in different shapes such as square, rectangular and cylindrical, v					
	rounded. The circular shape of the pipe make the pressure force evenly distribute		· ·			
	larger applications with sizes that range from a 0.5 inch to several meters.					
27	Write Burke-Plummer equation for packed beds. (N/D 2018)	CO4	K1			
	Energy dissipated per unit mass of fluid,	1	1			
	<u>x</u> ² (1) x (1) ² x					
	$e_{\rm f} = 1.75 \frac{V_{\rm s}^2}{d} \left(\frac{1-\varepsilon}{\varepsilon^3}\right) L + 180 \frac{V_{\rm s}\mu(1-\varepsilon)^2 L}{d^2 \varepsilon^3 \rho}$					
	$c_1 = 1.75 \ d \left(\varepsilon^3 \right)^2 + 100 \ d^2 \varepsilon^3 \rho$					
28	Differentiate between venturi and orifice meter. (N/D 2018)	CO5	K1			
_0	Refer Q.No. 9 for answer		1			
• *	Define slip, Percentage slip and negative slip of a reciprocating pump.	0.05				
29	(N/D 2018)	CO5	K1			
	Slip is the difference between theoretical discharge and actual discharge	1	1			

	$\% SLIP = \frac{Q_{th} - Q_{ac}}{Q_{th}} (100)$		
	If actual discharge is greater than theoretical discharge, we get negative value and	d thus it is c	alled
20	negative slip.	CO1	TZ 1
30	What is deformation rate or shear rate? (N/D 2017)	CO1	K1
	Deformation rate or Shear rate is the rate of change of velocity at which one lay adjacent layer.	er of fluid p	asses over an
31	What is barometric equation? (N/D 2017)	CO2	K1
	The barometric equation or formula, sometimes called the exponential at		
	atmosphere, is a formula used to model how the pressure (or density) of the air cl		
32	State the equation of continuity. (N/D 2017)	CO3	K1
	$\partial v_{\cdot,\cdot} = \partial v_{\cdot,\cdot} = \partial v_{-}$		
	$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$		
	$\partial x \partial y \partial z$		
33	What is form friction? (N/D 2017)	CO1	K1
	Friction inside pipes due to geometrical characteristics of the piping system		
	valves, etc. where flow is disturbed resulting in increased pressure loss is referred		
34	What is geometric similarity? (N/D 2017)	CO3	K1
	The similarity that exists between model and prototype based on the linear dime.	nsions. i.e. t	he ratio of all
	corresponding dimensions in the model and prototype are equal. $L_{\mu}(I_{\mu} = D_{\mu}) D_{\mu} = L_{\mu} (Sacha ratio)$		
35	$L_p/L_m = D_p/D_m = L_r \text{ (Scale ratio)}$ Define model and prototype. (N/D 2017)	CO3	K1
33	The model is the small scale replica of the actual structure or machine. The actual		
	called prototype.		of machine is
36	List the minor energy losses in pipe. (N/D 2017)	CO4	K1
	* Entrance of the pipe	001	
	* Exit of the pipe		
	* Pipe Bends		
	* Pipe fittings		
	* Pipe Expansions		
	* Pipe Contractions		
37	Write Darcy-Weishbach equation. (N/D 2017)	CO4	K1
	Head loss due to friction,		
	$h_f = 4fLV2/2dg$		
	f-Friction factor		
	L-Length of pipe		
	V-Mean velocity of flow d-Diameter of pipe		
38	How do pitot tubes function? (N/D 2017)	CO5	K1
50	Pitot tube works by the principle that, If the velocity of flow at a point becomes		
	increased due to the conversion of the kinetic energy into pressure energy.	zero, ine pre	
39	How to avoid cavitation? (N/D 2017)	CO5	K1
	To avoid cavitation,		I
	i. The pressure of the flowing liquid in any part of the hydraulic system	should not	be allowed to
	fall below its vapour pressure.		
	ii. Special materials or coatings such as aluminium-bronze and stainless s	teel, which	are cavitation
	resistant materials.		
40	What are Newtonian fluids? Give two examples. (A/M 2015)	C01	K1
	Refer Q.No. 1 for answer		T 74
41	Give the classification of fluids. (A/M 2015)	CO1	K1
	i. Ideal Fluid		
	ii. Real Fluid		
	iii. Newtonian fluid iv. Non-Newtonian fluid		

	v. Ideal plastic fluid.					
42	Write down the limitations of Bernoulli's equation. (A/M 2015)	CO2	K1			
	i. Uniform velocity is considered but practically, it is not true.					
	ii. The viscous drag of the liquid has not been taken into consideration but it comes into play when a					
	liquid is in motion.					
	iii. No loss of energy is assumed but some kinetic energy is converted into he	eat energy a	nd a part of			
	it is lost due to shear force.	1 fam1				
	iv. If the liquid is flowing along a curved path, the energy due to centrifug	al force sho	buid also be			
12	taken into consideration.	CO1	V1			
43	Define fluid rotation, vorticity and circulation. (A/M 2015) Potation: The meyoment of fluid element in such a way that both of its avec (H	CO1	K1			
	Rotation: The movement of fluid element in such a way that both of its axes (H rotate in the same direction.	ionzontal a	nu verucal)			
	Vorticity: Value twice that of the rotation is referred as Vorticity.					
	Circulation: Flow along a closed curve. Mathematically it is the product of the vel	locity com	onent along			
	the curve at any point and the length of the small element containing that point is					
	curve.					
44	Classify the losses in pipe. (A/M 2015)	CO4	K1			
	1.Major losses due to friction	1	1			
	2.Minor losses due to,					
	Refer Q.No. 37 for answer					
45	What is meant by laminar boundary layer? (A/M 2015)	CO4	K1			
	Boundary layer begins from the leading edge of a flat, smooth, stationary plate ex	posed to fl	owing fluid			
	in one side and the boundary layer grows in thickness downstream as the fluid ge	ets continua	ally retarded			
	by the shear stress. However upto a certain distance measured downstream from					
	flow within the boundary layer is laminar. This distance is called laminar zone a	and the bou	indary layer			
	above it is called laminar boundary layer.	1				
46	Distinguish between static head and manometric head of a pump. (A/M 2015)	CO5	K1			
	Static head (Hs) is the sum of Suction and Delivery head whereas, manometric h	ead is the h	nead against			
47	which a centrifugal pump has to work.	007	TZ 1			
47	What is the function of volute in centrifugal pump? (A/M 2015)	CO5	K1			
	Volute casing is of spiral type in which area of flow increases gradually. The in decreases the velocity of flow. The decrease in velocity increases the pressure of					
	decreases the velocity of flow. The decrease in velocity increases the pressure of the casing.	water now	ing unough			
48	Define Kinematic viscosity and Write its unit.(A/M 2012)	CO1	K1			
- 10	Kinematic viscosity (v) is the ratio of dynamic viscosity (μ) and density					
	m^2/s					
	$\nu = \mu/\rho$	1	1			
49	What is meant by Hydrostatic equilibrium? (N/D 2012)	CO2	K1			
	Refer Q.No. 24 for answer					
50	Write general continuity equation. (Nov/Dec 2012)	CO2	K1			
	$(P/\rho g) + (V^2/2g) + Z = Constant$		***			
51	Mention four types of pressure measurement manometers. (Nov/Dec 2012)	CO2	K1			
	Piezometer					
	U-Tube Manometer					
	Vertical Single Column Manometer					
52	Inclined Single Column Manometer Define Viscosity and Write its units. (N/D 2011)	CO1	K1			
54	Define Viscosity and Write its units. (N/D 2011) Viscosity is defined as the property of a fluid which offers resistance to the more					
	fluid over other layer of the fluid.	vement of (me layer of			
	$\mu = \tau / (du/dy)$					
	Unit: kg/m.s or Poise or Ns/m ²					
53	Distinguish between Laminar and Turbulent flow. (N/D 2011)	CO1	K1			
	Refer Q.No. 7 for answer					

54	Explain briefly the concept of continuum. (April/M	lav 2010)	CO1	K1			
04							
	Fluid is made of molecules. Fluid's properties such as density, or conditions such as pressure temperature, are considered as a whole, instead of conditions of individual molecules. In other words, we refer to the average or macroscopic aggregate effects of the fluid- molecules						
	reflected in pressure, temperature, density, etc.			,			
	Such an approach to treating a fluid is called	continuum based approach. I	n other w	ords, fluid is			
	treated as continuum.						
55	List out the laws of dimensional homogeneity? (Ap		CO3	K1			
	1. Reynolds model law	•					
	2. Froude model law						
	3. Euler model law						
	4. Weber model law						
	5. Mach model law						
56	What is meant by Hydrostatic equilibrium? (April	/May 2010)	CO2	K1			
	Refer Q.No. 2	24 for answer					
57	What is similitude? (April/May 2010)		CO3	K1			
	Refer Q.No. 2	25 for answer					
58	Give any two uses of dimensional analysis in so	cale-up studies. (April/May	CO3	K1			
30	2010)		05	K1			
	Refer Q.No. 2						
59	What do you mean by drag coefficient? (April/May	<i>2010</i>)	CO4	K1			
	Drag coefficient,						
	$C_D = F_D$	/0.5pu ²					
60							
60	What is the physical significance of Reynolds numTo assess the flow condition of fluids whether bounded		pirical res	ults.			
60	To assess the flow condition of fluids whether bounded	ed or unbounded based on emp					
60	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which	ed or unbounded based on emp the inertial forces takes over					
60	To assess the flow condition of fluids whether bounded	ed or unbounded based on emp the inertial forces takes over					
60	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics	ed or unbounded based on emp the inertial forces takes over etc	the visco	us forces that			
60	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data	the visco	us forces that			
	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data	the visco as there	us forces that are no direct			
<u>60</u> 61	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>)	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data	the visco	us forces that			
	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are,	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data	the visco as there	us forces that are no direct			
	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow.	the visco as there	us forces that are no direct			
	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pump	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow.	the visco as there	us forces that are no direct			
	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow.	the visco as there	us forces that are no direct			
	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum c. Linear type positive displacement pum	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow.	the visco as there	us forces that are no direct			
61	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement c. Linear type positive displacement pum ii. Centrifugal pumps.	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow.	the visco as there CO5	us forces that are no direct K1			
	 To assess the flow condition of fluids whether bounded. The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics. Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent. Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, Positive displacement pump Rotary type positive displacement pum Reciprocating type positive displacement pum Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. 	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. p ent pump p (<i>Nov/Dec 2010</i>)	the visco as there	us forces that are no direct			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No.	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer	the visco as there CO5 CO1	us forces that are no direct K1 K1			
61	 To assess the flow condition of fluids whether bounded. The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics. Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent. Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, Positive displacement pump Rotary type positive displacement pump Reciprocating type positive displacement pum Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i>) 	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010)	the visco as there CO5 CO1 CO5	us forces that are no direct K1			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Notches	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. p ent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs	the visco as there CO5 CO1 CO5	us forces that are no direct K1 K1			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size	the visco as there CO5 CO1 CO5	us forces that are no direct K1 K1 K1 K1			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size Generally made of metallic plate	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar	the visco as there CO5 CO1 CO5	us forces that are no direct K1 K1 K1 re			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel	the visco as there CO5 CO1 CO5	us forces that are no direct K1 K1 K1 re			
61 62 63	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening.	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs.	the visco as there CO5 CO1 CO5 ry structur over whi	us forces that are no direct K1 K1 K1 K1 ce ch the flow			
<u>61</u> <u>62</u>	To assess the flow condition of fluids whether bounded The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Market School (1998))	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>)	the visco as there CO5 CO1 CO5	us forces that are no direct K1 K1 K1 re			
61 62 63 64	To assess the flow condition of fluids whether bounde The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer	the visco as there CO5 CO1 CO5 ry structur over whi CO4	us forces that are no direct K1 K1 K1 re ch the flow K1			
61 62 63	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (April/May 2010) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (Nov/Dec 2 Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3) Name the velocity ranges for which a fluidized bed	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer can exist. (<i>Nov/Dec 2010</i>)	the visco as there CO5 CO1 CO5 ry structur over whi CO4 CO4	us forces that are no direct K1 K1 K1 K1 ce ch the flow			
61 62 63 64 65	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (<i>April/May 2010</i>) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (<i>Nov/Dec 2</i> Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the velocent Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the velocent Sumple State Sta	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer Can exist. (<i>Nov/Dec 2010</i>) ocity ranges from 3.5 to 5.0 m	the visco as there CO5 CO1 CO1 CO5 ry structur over whi CO4 CO4	us forces that are no direct K1 K1 K1 K1 K1 K1 K1			
61 62 63 64	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (April/May 2010) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (Nov/Dec 2 Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the veloc Why is diaphragm pumps widely used as metering	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer Can exist. (<i>Nov/Dec 2010</i>) ocity ranges from 3.5 to 5.0 m	the visco as there CO5 CO1 CO5 ry structur over whi CO4 CO4	us forces that are no direct K1 K1 K1 K1 re ch the flow K1			
61 62 63 64 65	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (April/May 2010) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (Nov/Dec 2 Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the veloc Why is diaphragm pumps widely used as metering They are less expensive to operate long-term.	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer can exist. (<i>Nov/Dec 2010</i>) pcity ranges from 3.5 to 5.0 m gpumps? (<i>Nov/Dec 2010</i>)	the visco as there CO5 CO1 CO1 CO5 ry structur over whi CO4 /s CO5	us forces that are no direct K1 K1 K1 K1 re ch the flow K1 K1 K1			
61 62 63 64 65	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (April/May 2010) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum i. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (Nov/Dec 2 Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the veloc Why is diaphragm pumps widely used as metering They are less expensive to operate long-term. They are designed to use more motor torque on	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer can exist. (<i>Nov/Dec 2010</i>) pcity ranges from 3.5 to 5.0 m gpumps? (<i>Nov/Dec 2010</i>)	the visco as there CO5 CO1 CO1 CO5 ry structur over whi CO4 /s CO5	us forces that are no direct K1 K1 K1 K1 re ch the flow K1 K1 K1			
61 62 63 64 65	To assess the flow condition of fluids whether bounder The higher this number signifies the degree to which arise due to boundary conditions, fluid characteristics Assessment of the flow should be conducted via e methods of evaluating the characteristics of turbulent Give the classification of pumps. (April/May 2010) Basic types of pumps are, i. Positive displacement pump a. Rotary type positive displacement pum b. Reciprocating type positive displacement pum ii. Centrifugal pumps. Define Non-Newtonian fluids. Give one examples. Refer Q.No. Distinguish between notches and weirs. (Nov/Dec 2 Notches Smaller in size Generally made of metallic plate The liquid surface in the tank or channel is below the top edge of the opening. List the minor losses encountered in pipe systems (Refer Q.No. 3 Name the velocity ranges for which a fluidized bed For particle size range of 150 to 350 microns, the veloc Why is diaphragm pumps widely used as metering They are less expensive to operate long-term.	ed or unbounded based on emp the inertial forces takes over etc xperimentally available data flow. pent pump p (<i>Nov/Dec 2010</i>) 1 for answer 2010) Weirs Bigger in size Made of concrete or masonar Placed in an open channel occurs. (<i>Nov/Dec 2010</i>) 37 for answer Can exist. (<i>Nov/Dec 2010</i>) ocity ranges from 3.5 to 5.0 m 3 pumps? (<i>Nov/Dec 2010</i>) the forward stroke, but sig	the visco as there CO5 CO1 CO1 CO5 ry structur over whi CO4 /s CO5 spificantly	us forces that are no direct K1 K1 K1 K1 re ch the flow K1 K1 K1 k1 k1 k1 k1 k1			

	damage the surrounding area.		
	They can overcome standing pressure in the flow line.		
67	What do you mean by kinematic viscosity of a fluid? (Nov/Dec 2009)	CO1	K1
	Refer Q.No. 51 for answer		
68	How will you measure the pressure head of a static fluid? (Nov/Dec 2009)	CO2	K1
	Pressure head,		
	$Z = p/\rho g$		
	Where,		
	p – Pressure acting on the static fluid		
	ρ – Density of the fluid		
	g – gravitational constant		
69	Distinguish between Laminar and Turbulent flow. (Nov/Dec 2009)	CO1	K1
	Refer Q.No. 7 for answer		
70	Define the term friction factor. (Nov/Dec 2009)	CO4	K1
	Dimensionless quantity used for the description of friction losses in pipe flow and		
	$f = 2\tau_o/\rho V^2$	in open en	
71	What is meant by dimensional homogeneity? (Nov/Dec 2009)	CO3	K1
	Dimension of each term in the equation on both sides are equal. Thus if the dime		
	both sides of an equation are the same the equation is known as dimensionally hor		
72	What is the use of rotameter? (<i>Nov/Dec 2009</i>)	CO5	K1
	The rotameter is an industrial flowmeter used to measure the flowrate of liquids a		
	consists of a tube and float. The float response to flowrate changes is linear.	nu gases. I	ne iotanietei
73	What are the minor losses in pipe systems? (<i>Nov/Dec 2009</i>)	CO4	K1
15	Refer Q.No. 37 for answer	04	NI
74		COA	K1
74	What is known as equivalent pipe diameter? (<i>Nov/Dec 2009</i>)	CO4	
	The equivalent diameter is the diameter of a circular duct or pipe that for equi	al now gr	ves the same
	pressure loss or resistance as an equivalent rectangular duct or pipe.	-	1
==		005	T71
75	What are the desirable pump characteristics? (<i>Nov/Dec 2009</i>)	CO5	K1
75	1. Head- Résistance to flow	CO5	K1
75	 Head- Résistance to flow Friction head 	CO5	<u>K1</u>
75	 Head- Résistance to flow Friction head Velocity head 	CO5	K1
75	 Head- Résistance to flow Friction head Velocity head Pressure head 	<u>CO5</u>	K1
75	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction 	<u>CO5</u>	K1
75	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge 	<u>CO5</u>	K1
	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head 		
75	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>)	CO5	K1
	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (Nov/Dec 2009) Air Compressors are generally used in a wide range of situations from corne	CO5 r gas statio	K1 ons to major
	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>)	CO5 r gas statio	K1 ons to major
	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to	CO5 r gas statio	K1 ons to major
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas.	CO5 r gas static a high pres	K1 ons to major sure.
	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>)	CO5 r gas static a high pres CO1	K1 ons to major sure. K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for	CO5 r gas station a high pres CO1 real gases.	K1 ons to major sure. K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecular	CO5 r gas station a high pres CO1 real gases. r momentu	K1 ons to major sure. K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>)	CO5 r gas station a high pres CO1 real gases.	K1 ons to major sure. K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>)	CO5 r gas static a high pres CO1 real gases. ar momentu CO1	K1 ons to major sure. K1 m K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>) What is similitude? (<i>Nov/Dec 2009</i>)	CO5 r gas station a high pres CO1 real gases. r momentu	K1 ons to major sure. K1
76 77 78 79	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m² to poise. (<i>Nov/Dec 2009</i>) 1N/m² = 2x10⁶poise What is similitude? (<i>Nov/Dec 2009</i>) 	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3	K1 ons to major sure. K1 Im K1
76	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m² to poise. (<i>Nov/Dec 2009</i>) 1N/m² = 2x10⁶poise What is similitude? (<i>Nov/Dec 2009</i>) 	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3	K1 K1 K1 K1 K1 K1 K1
76 77 78 79	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m² to poise. (<i>Nov/Dec 2009</i>) 1N/m² = 2x10⁶poise What is similitude? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical phys	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3 CO3	K1 ons to major sure. K1 IM K1 IM K1 and if these
76 77 78 79	 Head-Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>) Refer Q.No. 25 for answer State Buckingham's pi theorem? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical privariables contain m fundamental dimensions (M, L, T) then the variables and physical privations for the variables and the privation of the privation of the variables and the variables and the privation of the privatity of the privation of the privation of the privation of the p	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3 CO3	K1 ons to major sure. K1 IM K1 K1 K1 MI K1
76 77 78 79	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>) Refer Q.No. 25 for answer State Buckingham's pi theorem? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical privariables contain m fundamental dimensions (M, L, T) then the variables a dimensionless terms.	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3 CO3	K1 ons to major sure. K1 IM K1 IM K1 and if these
76 77 78 79	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>) Mat is similitude? (<i>Nov/Dec 2009</i>) IN/m ² = 2x10 ⁶ poise What is similitude? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical privariables contain m fundamental dimensions (M, L, T) then the variables a dimensionless terms. What do you mean by boundary layer separation? (<i>Nov/Dec 2009</i>)	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3 enomenon re arranged CO4	K1 ons to major sure. K1
76 77 78 79 80	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m² to poise. (<i>Nov/Dec 2009</i>) 1N/m² = 2x10⁶poise What is similitude? (<i>Nov/Dec 2009</i>) Iter q.No. 25 for answer State Buckingham's pi theorem? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical physical physical pit wariables contain m fundamental dimensions (M, L, T) then the variables a dimensionless terms. 	CO5 r gas static a high pres CO1 real gases. ar momentu CO1 CO3 enomenon re arranged CO4	K1 ons to major sure. K1
76 77 78 79 80	 Head- Résistance to flow Friction head Velocity head Pressure head Total dynamic suction Total dynamic discharge Total head or total dynamic head Distinguish between blowers and compressors (<i>Nov/Dec 2009</i>) Air Compressors are generally used in a wide range of situations from corne manufacturing plants. The main purpose of a compressor is to compress the air to Blowers are used for circulation of gas. What is the effect of pressure on viscosity of gasses? (<i>Nov/Dec 2009</i>) The viscosity of an ideal gas is independent of pressure, and this is almost true for In gases, Viscosity arises mainly because of the transfer and exchange of molecula Convert 1N/m ² to poise. (<i>Nov/Dec 2009</i>) Mat is similitude? (<i>Nov/Dec 2009</i>) IN/m ² = 2x10 ⁶ poise What is similitude? (<i>Nov/Dec 2009</i>) If there are n variables (independent and dependent variables) in a physical privariables contain m fundamental dimensions (M, L, T) then the variables a dimensionless terms. What do you mean by boundary layer separation? (<i>Nov/Dec 2009</i>)	CO5 r gas stational station stationa stationa stational stationa stationa stationa stationa	K1 ons to major sure. K1 and if these into (n-m) K1 ader wake. It

The separation point is defined as the point between the forward and backward flow, where the sh stress is zero. 82 Distinguish interstitial velocity from superficial velocity. (Nov/Dec 2009) Interstitial Velocity is the speed at which the molecules of water are progressing in the direction movement. Superficial velocity is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid w the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of 1 porous medium, etc. present in the channel are disregarded. 83 What is the basic principle involved in variable area meters? (Nov/Dec 2009) CO5 K1 Variable area flow meters operate at a constant pressure difference (Ap) and the area changes with 1 flowrate. The area will increase as the flowrate through the meter increases to preserve a const Pressure difference (Ap). 84 Explain priming in pumps (Nov/Dec 2009) CO1 K1 84 Explain priming in pumps (Nov/Dec 2009) CO1 K1 85 Define stream line, Streak line and Path line. (M/l 2009) CO1 K1 85 Define stream line, Streak line and Path line. (M/l 2009) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Define staten as datum/reference Absolute pressure Atureference 88
82 Distinguish interstitial velocity from superficial velocity. (Nov/Dec 2009) Interstitial Velocity is the speed at which the molecules of water are progressing in the direction movement. Superficial velocity is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid with the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of porous medium, etc. present in the channel are disregarded. 83 What is the basic principle involved in variable area meters? (Nov/Dec 2009) K1 Variable area flow meters operate at a constant pressure difference (Δp). R4 Explain priming in pumps (Nov/Dec 2009) COI K1 Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portiof the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. COI K1 85 Define stream line, Streak line and Path line. (M/J 2009) COI K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is the line made by a single particle as it moves during a period of time. It refers to 1 path of a single particle A streamline for sto an instantaneous picture of the velocity directions of a time. It refers to 1 path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009) COI K1 87
Interstitial Velocity is the speed at which the molecules of water are progressing in the direction movement. Superficial velocity is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid with eonly one flowing or present in the channel are disregarded. 83 What is the basic principle involved in variable area meters? (Nov/Dec 2009) CO5 K1 Variable area flow meters operate at a constant pressure difference (Ap) and the area changes with flowrate. The area will increase as the flowrate through the meter increases to preserve a constar Pressure difference (Ap). Priming in gumps (Nov/Dec 2009) CO5 K1 84 Explain priming in pumps (Nov/Dec 2009) Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portio of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. SO CO1 K1 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle Math of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure Absolute pressure = Atmospheric pressure + Atmospheric pressure
movement. Superficial velocity is a hypothetical (artificial) flow velocity calculated as if the given phase or fluid w the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of porous medium, etc. present in the channel are disregarded. 83 What is the basic principle involved in variable area meters? (<i>Nov/Dec 2009</i>) CO5 K1 Variable area flow meters operate at a constant pressure difference (Ap). Explain priming in pumps (<i>Nov/Dec 2009</i>) CO1 K1 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) CO1 K1 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 86 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 87 A streamline refers to an instantaneous picture of the velocity directions of a number of particle of fluid which have passed that point. A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. 86 Differentiate gauge pressure from absolute pressure (May/June 2009, CO1 K1 87 Gauge pressure = Absolute pressure Absolute pressure is taken as datum/reference 88 Differentiate gauge pressure from absolute pressure = Atmospheric pressure + Atmospheric pressure = Atmospheric pressure + Cauge pressure Absolute pressure = Absolute pressure + Cauge pressure
the only one flowing or present in a given cross sectional area. Other phases, particles, the skeleton of the prorus medium, etc. present in the channel are disregarded. 83 What is the basic principle involved in variable area meters? (<i>Nov/Dec 2009</i>) CO5 K1 Variable area flow meters operate at a constant pressure difference (Δp) and the area changes with thowrate. The area will increase as the flowrate through the meter increases to preserve a const. Pressure difference (Δp). Image: Constant pressure difference (Δp) 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) Image: Constant pressure difference (Δp). Image: Constant pressure difference (Δp). 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) CO1 K1 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) CO1 K1 85 Define stream line, Streak line and Path line. (<i>M/J 2009</i>) CO1 K1 86 A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Define metacentric height (May/ June 2009) CO1 K1 88
Bits porous medium, etc. present in the channel are disregarded. 83 What is the basic principle involved in variable area fuers? (<i>Nov/Dec 2009</i>) CO5 K1 Variable area flow meters operate at a constant pressure difference (Δp) and the area changes with if flowrate. The area will increase as the flowrate through the meter increases to preserve a consta Pressure difference (Δp). 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portio of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. 85 Define stream line, Streak line and Path line. (<i>M/J</i> 2009) CO1 K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is a line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, CO1 K1 Mov/Dec 2007) Gauge pressure = Absolute pressure Absolute pressure 87 Define metacentric height (May/ June 2009) Distance between the metacentre of a floating body and centre of gravity of the body is
83 What is the basic principle involved in variable area meters? (<i>Nov/Dec 2009</i>) CO5 K1 Variable area flow meters operate at a constant pressure difference (Δp) and the area changes with a flowrate. The area will increase as the flowrate through the meter increases to preserve a const. Pressure difference (Δp). Image: Constant operation in which the meter increases to preserve a const. Pressure difference (Δp). 84 Explain priming in pumps (<i>Nov/Dec 2009</i>) Image: Constant operation in which the suction pipe, casing and a portion of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. CO1 K1 85 Define stream line, Streak line and Path line. (<i>MJ</i> 2009) CO1 K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is a line made by a single particle as it moves during a period of time. It refers to path of a single particle Math is not a single particle K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Define entacentric height (<i>May</i> / <i>June</i> 2009) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Define metacentric height (<i>May</i> / <i>June</i> 2009) Image: Nov/De
Variable area flow meters operate at a constant pressure difference (Δp) and the area changes with a flowrate. The area will increase as the flowrate through the meter increases to preserve a const. Pressure difference (Δp). 84 Explain priming in pumps (Nov/Dec 2009) 87 Define priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a port of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. CO1 K1 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 84 A streamline refers to an instantaneous picture of the velocity directions of a number of particle. A streak line is the line made by a dye injected into a fluid at one point, and thus, marks it positions of all the particles of fluid which have passed that point. 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Not/Dec 2007) CO1 K1 87 A streak line is taken as datum/reference Absolute pressure = Absolute pressure = Atmospheric pressure + Atmospheric pressure = Atmospheric pressure = Atmospheric pressure = Atmospheric pressure + Atmospheric pressure = A
flowrate. The area will increase as the flowrate through the meter increases to preserve a consta Pressure difference (Ap). 84 Explain priming in pumps (Nov/Dec 2009) Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portion of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streaw line is the line made by a dye injected into a fluid at one point, and thus, marks i positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to a path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure = Absolute pressure Absolute vacuum pressure is taken as datum/reference Atmospheric pressure = Absolute pressure – Absolute pressure = Absolute pressure = Atmospheric pressure + Atmospheric pressure = Absolute pressure = Absolute pressure = Cauge pressure Image pressure = Cauge pressure = Cauge pressure 87 Define metacentric height (May/ June 2009) Image pressure = Cauge pressure = Absolute pressure = Cauge
84 Explain priming in pumps (Nov/Dec 2009) 97 Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portion of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streak line is the line made by a dye injected into a fluid at one point, and thus, marks is positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Atmospheric pressure is taken as datum/reference Absolute pressure 87 Define metacentric height (May/June 2009) Image pressure + Atmospheric pressure - Absolute pressure = Atmospheric pressure + Atmospheric pressure Image pressure + Atmospheric pressure + Atmospheric pressure = Atmospheric pressure = Stellating bady and centre of gravity of the body is called metacent height. 88 What is the principle of dimensional homogeneity? (May/June 2009) Image Pressure = Action of Stellating when the body is tilted by small angle. 89 What are scale effects in model studies? (May/June 2009) Image Pressure + Refer Q.No. 78 for answer Image Pressure + Refe
84 Explain priming in pumps (<i>Nov/Dec 2009</i>) Image: construct of the delivery yalve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. 85 Define stream line, Streak line and Path line. (<i>MJJ 2009</i>) CO1 K1 86 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 Absolute pressure is taken as datum/reference Absolute pressure is taken as datum/reference Absolute pressure is taken as datum/reference Gauge pressure = Absolute pressure = Absolute pressure = Atmospheric pressure + Atmospheric pressure Gauge pressure = Absolute pressure = Cauge pressure + Cauge pressure 87 Define metacentric height (May/ June 2009) Image: Cauge pressure = Cauge pressure Scala effect occurs when a prototype hydraulic process is simulated at a laboratory scale due disatisfaction of similarity laws. It might lead to considerable deviation when the model scour dup the extrapolated to prototype value 89 What are
Priming in a centrifugal pump is defined as the operation in which the suction pipe, casing and a portion of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streak line is the line made by a dye injected into a fluid at one point, and thus, marks the positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Gauge pressure is taken as datum/reference Absolute pressure Absolute pressure CO1 K1 88 Dafine metacentric height (May/ June 2009) Distance between the metacentre of a floating body and centre of gravity of the body is called metacentheight. Meta is the principle of dimensional homogeneity? (May/ June 2009) Extern the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Refer Q.No. 78 for answer Extern al alboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Externe prototype value Externe 2009 K1
of the delivery pipe upto the delivery valve is completely filled up from outside source with the liquid be raised by the pump before starting the pump. Stepsilon 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Nov/Dec 2007) Gauge pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Absolute pressure K1 87 Define metacentric height (May/ June 2009) Image pressure Image pressure + Gauge pressure + Gauge pressure + Gauge pressure Stance between the metacentre of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. Seale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scoure depth extrapolated to prototype value 90 List the minor loss
be raised by the pump before starting the pump. CO1 K1 85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to to path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Nov/Dec 2007) CO1 K1 87 Gauge pressure = Absolute pressure - Absolute pressure - Atmospheric pressure = Atmospheric pressure - Atmospheric pressure + Gauge pressure + Gauge pressure + Gauge pressure + Gauge pressure = Mosolute in the pressure = Atmospheric pressure + Basolute pressure - Atmospheric pressure + College pr
85 Define stream line, Streak line and Path line. (M/J 2009) CO1 K1 A streamline refers to an instantaneous picture of the velocity directions of a number of particle. A streak line is the line made by a dye injected into a fluid at one point, and thus, marks to positions of all the particles of fluid which have passed that point. A streak line is a line made by a single particle as it moves during a period of time. It refers to a path of a single particle It is the particle stream line, Streak line is a line made by a single particle as it moves during a period of time. It refers to path of a single particle It is the particle stream line, Streak line is a line made by a single particle as it moves during a period of time. It refers to path of a single particle It is the particle stream line, Streak line is a line made by a single particle as it moves during a period of time. It refers to path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Gauge pressure = Absolute pressure = Absolute pressure = Atmospheric pressure + Atmospheric pressure = Atmospheric pressure = Atmospheric pressure + Atmospheric pressure of a floating body and centre of gravity of the body is called metacent height. It is the principle of dimensional homogeneity? (May/ June 2009) It is called metacent when the distendies? (May/ June 2009) It is called metacent when the ingent diverse is simulated at a laboratory scale due dissatifaction of similarity laws. It might lead to considerable deviation when the model scule wetare extrapolated to prototype value It is the minor losses in a pipe flow. (May/ June 2009
A streamline refers to an instantaneous picture of the velocity directions of a number of particle A streak line is the line made by a dye injected into a fluid at one point, and thus, marks in positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Nov/Dec 2007) CO1 K1 90 Gauge pressure Absolute pressure Atmospheric pressure = Absolute pressure Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure – Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure – Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Atmospheric pressure Gauge pressure Befine metacentric height (May/ June 2009) Image pressure Distance between the metacentre of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Scale effect ocurs when a prototype hydraulic process is simulated at a laboratory scale due dissatifaction of similarity laws. It might lead to considerable
A streak line is the line made by a dye injected into a fluid at one point, and thus, marks i positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Define metacentric height (May/ June 2009) 87 Define metacentric height (May/ June 2009) 88 What is the principle of dimensional homogeneity? (May/ June 2009) 88 What is the principle of dimensional homogeneity? (May/ June 2009) 89 What are scale effects in model studies? (May/ June 2009) 89 What are scale effects in model studies? (May/ June 2009) 89 What are scale effect
positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Gauge pressure = Absolute pressure - Atmospheric pressure = Atmospheric pressure (Gauge pressure = Atmospheric pressure - Atmospheric pressure) Distance between the metacentre of a floating body and centre of gravity of the body is called metacentheight. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. Refer Q.No. 78 for answer E 88 What is the principle of dimensional homogeneity? (May/ June 2009) E E E 89 What are scale effects in model studies? (May/ June 2009) E E E 90 List the minor losses in a pipe flow. (May/ June 2009) E E E 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) E E 91 Unue 2009) <td< th=""></td<>
positions of all the particles of fluid which have passed that point. A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 87 Gauge pressure = Absolute pressure - Atmospheric pressure Absolute pressure = Atmospheric pressure + Gauge pressure Co1 K1 87 Define metacentric height (May/ June 2009) Image: Content is defined as the point about which a body starts oscillating when the body is tilted by small angle. Stall angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Imagee Content is scale effects in model studies? (May/ June 2009) Imagee Content is scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatifaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value Refer Q.No. 37 for answer 90 List the minor losses in a pipe flow. (May/ June 2009) Imagee Refer Q.No. 37 for answer Imagee Refer Q.No. 37 for answer 91 June 2009) Imagee Refe
A path line is a line made by a single particle as it moves during a period of time. It refers to the path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Nov/Dec 2007) CO1 K1 86 Nov/Dec 2007) Absolute pressure Absolute pressure 86 Nov/Dec 2007) Absolute pressure K1 86 Sov/Dec 2007) Absolute pressure Absolute pressure 87 Define metacentric height (May/ June 2009) Image pressure Image pressure 87 Define metacentric height (May/ June 2009) Image pressure Image pressure Image pressure 88 What is the principle of dimensional homogeneity? (May/ June 2009) Image pressure Image pressure Image pressure 89 What are scale effects in model studies? (May/ June 2009) Image pressure Image pressure Image pressure 90 List the minor losses in a pipe flow. (May/ June 2009) Image pressure Image pressure Image pressure 91 Define mentum thickness and energy thickness of a boundary layer. (May/ June 2009) Image pressure K1 82 What is Net Positive Suction Head (NPSH)? (May/ Jun
path of a single particle 86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Gauge pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference 87 Define metacentric height (May/ June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 88 What is the principle of dimensional homogeneity? (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 89 What are scale effects in model studies? (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 90 List the minor losses in a pipe flow. (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 91 Define momentum thickness and energy thickness of a boundary layer. (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 92 List the minor losses in a pipe flow. (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) Image: Color (May/June 2009) 94 List the minor losses and energy thickness of a boundary layer. (May/June 2009) Image: Color (May/June 2009) <
86 Differentiate gauge pressure from absolute pressure (May/June 2009, Nov/Dec 2007) CO1 K1 86 Gauge pressure Absolute pressure Absolute pressure Atmospheric pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure - Absolute pressure = Atmospheric pressure + Atmospheric pressure Absolute pressure = Atmospheric pressure + 87 Define metacentric height (May/ June 2009) Image: Comparison of the pressure of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Image: Comparison of the prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Image: Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) Image: Comparison of the prototype 2009 What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5 K1
80 Nov/Dec 2007) CO1 K1 Gauge pressure Absolute pressure Atmospheric pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Atmospheric pressure Gauge pressure = Atmospheric pressure + Batter of Gauge pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Batter of Batter of Batter of Batter of Gauge pressure Gauge pressure Batter of Batter of Batter of Batter of Batter of Gauge pressure Gauge pressure Batter of Batter of Batter of Batter of Batter of Gauge pressure Batter of Bat
Nov/Dec 2007) Absolute pressure Atmospheric pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Atmospheric pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Gauge pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Befine metacentric height (May/ June 2009) Image: Pressure Bistance between the metacentre of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Image: Pressure (May/ June 2009) 89 What are scale effects in model studies? (May/ June 2009) Image: Pressure (May/ June 2009) Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Image: Pressure Pressu
Atmospheric pressure is taken as datum/reference Absolute vacuum pressure is taken as datum/reference Gauge pressure = Absolute pressure – Atmospheric pressure Absolute pressure = Atmospheric pressure + Gauge pressure 87 Define metacentric height (May/ June 2009) Image: Comparison of the body is called metacenthe height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. Refer Q.No. 78 for answer 88 What is the principle of dimensional homogeneity? (May/ June 2009) Image: Comparison of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Image: Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2003) CO5 K1 What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5
datum/reference Gauge pressure = Absolute pressure – Absolute pressure = Atmospheric pressure + Atmospheric pressure Gauge pressure 87 Define metacentric height (May/ June 2009) Distance between the metacentre of a floating body and centre of gravity of the body is called metacentric height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Refer Q.No. 78 for answer 1 89 What are scale effects in model studies? (May/ June 2009) 1 Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) 1 Refer Q.No. 37 for answer 1 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) 1 What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5 K1
Gauge pressure = Absolute pressure – Atmospheric pressure Absolute pressure = Atmospheric pressure + Gauge pressure 87 Define metacentric height (May/ June 2009)
Atmospheric pressure Gauge pressure 87 Define metacentric height (May/ June 2009)
87 Define metacentric height (May/ June 2009) Distance between the metacentre of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Refer Q.No. 78 for answer 89 What are scale effects in model studies? (May/ June 2009) Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Refer Q.No. 37 for answer 91 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5
Distance between the metacentre of a floating body and centre of gravity of the body is called metacent height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Refer Q.No. 78 for answer 89 What are scale effects in model studies? (May/ June 2009) Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5
height. Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle.88What is the principle of dimensional homogeneity? (May/ June 2009)89What are scale effects in model studies? (May/ June 2009)89What are scale effects in model studies? (May/ June 2009)90Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value90List the minor losses in a pipe flow. (May/ June 2009) Refer Q.No. 37 for answer91Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009)91What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003)CO5
Metacentre point is defined as the point about which a body starts oscillating when the body is tilted by small angle.88What is the principle of dimensional homogeneity? (May/ June 2009)89What are scale effects in model studies? (May/ June 2009)89What are scale effects in model studies? (May/ June 2009)90Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value90List the minor losses in a pipe flow. (May/ June 2009)91Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009)CO5K1
small angle. small angle. 88 What is the principle of dimensional homogeneity? (May/ June 2009) Refer Q.No. 78 for answer 89 What are scale effects in model studies? (May/ June 2009) Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) 81 Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) 91 What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5
88 What is the principle of dimensional homogeneity? (May/ June 2009) Image: Constraint of the principle of dimensional homogeneity? (May/ June 2009) 89 Refer Q.No. 78 for answer Image: Constraint of the principle of dimensional studies? (May/ June 2009) 89 What are scale effects in model studies? (May/ June 2009) Image: Constraint of the principle of dimensional homogeneity? (May/ June 2009) 89 Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Image: Constraint of the principle of
Refer Q.No. 78 for answer Image: Constraint of the sector of the sec
Scale effect occurs when a prototype hydraulic process is simulated at a laboratory scale due dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) 91 Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) 91 What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003)
dissatisfaction of similarity laws. It might lead to considerable deviation when the model scour depth extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) 91 Understand the state of the s
extrapolated to prototype value 90 List the minor losses in a pipe flow. (May/ June 2009) 0 Refer Q.No. 37 for answer 0 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5
90 List the minor losses in a pipe flow. (May/ June 2009) Image: Comparison of the pipe flow of th
Refer Q.No. 37 for answer 91 Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009) (May/ What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5 K1
91Define momentum thickness and energy thickness of a boundary layer. (May/ June 2009)(May/ CO5What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003)CO5
91 June 2009) Image: Contract of the second
What is Net Positive Suction Head (NPSH)? (May/ June 2009, Nov/Dec 2003) CO5 K1
74 + INF SIL – AUSOLULE DIESSULE HEAD AL LIE HHEL OF LEE DUMD – VADOUT DIESSULE + VETOCITY NEAD
Compressible - Density changes significantly with changes in temperature and pressure. E.g.: CNG, LPG
93
Incompressible - Density changes slightly or does not change with moderate changes
Incompressible - Density changes slightly or does not change with moderate changes temperature and pressure.

	What is Capillarity? (A/M 2008)	CO1	K1				
94	Phenomenon of fall or rise of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid. Rise of liquid surface is called capillary rise and fall of liquid surface is called capillary depression.						
	What happens to viscosity of fluids when its temperature is increased? (N/D 2003, N/D 2007)	CO1	K1				
95	Liquid viscosity decreases with increase in temperature. Gas viscosity increases with increase in temperature. Reason: Cohesive force and Molecular momentum transport are responsible factors. In liquids, cohesive force is predominant which decreases when temperature is increased. In gasses, Molecular momentum transport is predominant which increases when temperature is increased.						

The viscosity of a fluid is a measure of its resistance to flow. Consider two long, solid plat separated by a thin film of fluid. To make the upper plate move steadily at a velocity of u on's relative at parallel to the lower plate, a force is required to overcome the fiction in the fluid between the plates and maintain the viscosity ue. This force change with different velocities, plate sizes, fluids, and distance between the plates. The shear stress t is the force per unit area of the plate. For low values of u ₀ the velocity profile in the fluid between the plates is found to be linear and $u = \frac{u_0 Y}{y_0}$ Thus, $\frac{du}{dy} = \frac{u_0}{y_0}$ Thus, is value and the stress of the velocity of a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation. all of which met exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m?k. Fluids that obey. Newton's law of viscosity are called Newtonian fluids. All the others are no Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids. All the others are no Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much larg than water molecules. Toothpaste, paints, jellies, gels, slu	1	Explain in detail about Viscosity	CO1	K2
parallel to the lower plate, a force is required to overcome the fletion in the fluid between the plates and maintain the viscosity u ₀ . This force change with different velocities, plate sizes, fluids, and distance between the plates. The shear stress t is the force per unit area of the plate. For low values of u ₀ the velocity profile in the fluid between the plates is found to be linear and $\begin{aligned} u &= \frac{u_0 y}{y_0} \\ Thus, & \frac{du}{dy} &= \frac{u_0}{y_0} \\ \text{For most fluids the results of this experiment can be shown most conveniently on a plot of \tau verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mere exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: \tau = \mu \frac{du}{dy} \\ \text{The viscosity of the coefficient of viscosity } \mu is defined as \begin{aligned} \mu &= \frac{\tau}{du/dy} \\ \text{such as the units of Pa s.} \\ Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcohe carbon tetrachloride, bexare and cher, are Newtonian. Must solutions of imple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water. Non-Newtonian fluids, on the other much largy than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluid. The considered a function of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.$			•	.
imaintain the viscosity u_0 . This force change with different velocities, plate sizes, fluids, and distance between the plates. The shear stress τ is the force per unit area of the plate. For low values of u_0 the velocity profile in the fluid between the plates is found to be linear and $u = \frac{u_0 y}{y_0}$. Thus, $\frac{du}{dy} = \frac{u_0}{y_0}$. For most fluids the results of this experiment can be shown most conveniently on a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mer exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcohe carbon tetrachloride, hexane and tether, are Newtonian fluids solutions of inorganic salis, and of sugar in water, Non-Newtonian fluids, on the other much larg than water molecules. Toothpaste, paints, jellies, gels, sluries and polymer solutions are common example of non – Newtonian fluids.				
between the plates. The shear stress τ is the force per unit area of the plate. For low values of u_0 the velocity profile in the fluid between the plates is found to be linear and $\begin{aligned} u &= \frac{u_0 y}{y_0} \\ Thus, & \frac{du}{dy} = \frac{u_0}{y_0} \end{aligned}$ For most fluids the results of this experiment can be shown most conveniently on a plot of τ versu du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mea exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{p}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids, hall gases and liquids with a simple chemical formula, such as water, benzene, alcobe carbon tetrachloride, hexare and ether, are Newtonian. Non-Newtonian fluids, on the other much large than water molecules. To obtpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.			·	
For low values of u ₀ the velocity profile in the fluid between the plates is found to be linear and $\begin{split} & u = \frac{u_0 y}{y_0} \\ Thus, & \frac{du}{dy} = \frac{u_0}{y_0} \\ Thus, & du = \frac{u_0 y}{y_0} \\ Thus, & du = \frac{u_0}{y_0} \\ dv'dy is variously called the role of strain, shear rate, and rat of shear deformation, all of which meat exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: \tau = \mu \frac{du}{dy} \\ The viscosity of the coefficient of viscosity \mu is defined as\mu = \frac{\tau}{du/dy} \\ and has the units of Pa s. The kinematics viscosity v is defined as \\ V = \frac{\mu}{p} \\ sad has the units of m^2/s. \\ \\ Thuids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids, have a deformed a situation of the solutions of simple molecules are Newtonian such as water, benzene, alcohe carbon tetrachloride, hexare and teher, are Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. The are three common types of non – Newtonian fluids. The considered a function of du/dy. There are three common types of non – Newtonian fluids. I function of du/dy. There are three common types of non – Newtonian fluids. I function of du/dy. There are three common types of non – Newtonian fluids.$, and dist	tances
$\begin{split} u &= \frac{u_0 y}{y_0} \\ Thus, \qquad \frac{du}{dy} &= \frac{u_0}{y_0} \\ \hline Thus, \qquad \frac{du}{dy} &= \frac{u_0}{y_0} \\ \hline Thus, &= \frac{du}{dy} &= \frac{u_0}{y_0} \\ \hline The value of the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. \\ Such a fluid is called Newtonian because it is described by Newton's law of viscosity: \\ &= \frac{u}{dy} \\ \hline The viscosity of the coefficient of viscosity µ is defined as \\ &= \frac{\tau}{du/dy} \\ \text{and has the units of Pa s. The kinematics viscosity v is defined as \\ &= \frac{v}{p} \\ \text{sad has the units of m^2/s.} \\ \hline Thuids that obey Newton's law of viscosity are called Newtonian fluids. All the others are no Newtonian thruids, half gases and liquids with a simple chemical formula, such as water, benzene, alcohe carbon tetrachloride, hexane and ether, are Newtonian fluids. Note ther much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. The viscosity divent of viscosity are is obvious that are viscosity of a non – Newtonian fluids cannot be considered a function of du/dy. There are three common types of non – Newtonian fluids. The are three common types of non – Newtonian fluids. The sum of the considered a function of du/dy. There are three common types of non – Newtonian fluids. The sum of the common types of non – Newtonian fluids. The sum of the du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids. The sum of the du dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids. The sum of the common types of non – Newtonian fluids. The temperature here the common types of non – Newtonian fluids. The temperature to the the common type of non – Newtonian fluids. $		between the plates. The shear stress τ is the force per unit area of the plate.		
Thus, $\frac{du}{dy} = \frac{u_0}{y_0}$ For most fluids the results of this experiment can be shown most conveniently on a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mee exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m²/s.Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonia such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much larg that water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluids.		For low values of u_0 the velocity profile in the fluid between the plates is found to be linear an	nd	
Thus, $\frac{du}{dy} = \frac{u_0}{y_0}$ For most fluids the results of this experiment can be shown most conveniently on a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mee exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m²/s.Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonia such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much larg that water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluids.				
Thus, $\frac{du}{dy} = \frac{u_0}{y_0}$ For most fluids the results of this experiment can be shown most conveniently on a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which mee exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m²/s.Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonia such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much larg that water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluids.		$u = \frac{u_0 y}{v}$		
For most fluids the results of this experiment can be shown most conveniently on a plot of τ versa du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which meat exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcohor carbon terachloride, hexane and ther, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluids cannot be considered a function of du/dy. There are three common types of non – Newtonian fluids.		y _o		
For most fluids the results of this experiment can be shown most conveniently on a plot of τ verse du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which meat exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon terachloride, hexane and ther, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.		du u _o		
For most fluids the results of this experiment can be shown most conveniently on a plot of τ versa du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which meat exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: $\tau = \mu \frac{du}{dy}$ The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcohor carbon terachloride, hexane and ther, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluids cannot be considered a function of du/dy. There are three common types of non – Newtonian fluids.		Thus, $\frac{dv}{dv} = \frac{dv}{v_{a}}$		
$\begin{aligned} & du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all of which meat exactly the same thing. The behaviour of most commonly known fluids can be graphically represented by straight line passing through the origin. Such a fluid is called Newtonian because it is described by Newton's law of viscosity: \tau = \mu \frac{du}{dy} \\ The viscosity of the coefficient of viscosity \mu is defined as \mu = \frac{\tau}{du/dy} \\ and has the units of Pa s. \\ The kinematics viscosity v is defined as \\ & V = \frac{\mu}{\rho} \\ sad has the units of m^2/s. \\ \hline Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcohe carbon tetrachloride, hexane and etter, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water. Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. The other solution of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.$				
The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		du/dy du/dy is variously called the rote of strain, shear rate, and rat of shear deformation, all exactly the same thing. The behaviour of most commonly known fluids can be graphically r straight line passing through the origin.	of which	mean
The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		du		
The viscosity of the coefficient of viscosity μ is defined as $\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		$\tau = \mu \frac{dd}{dt}$		
$\mu = \frac{\tau}{du/dy}$ and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids.		dy		
and has the units of Pa s. The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		The viscosity of the coefficient of viscosity μ is defined as		
The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		$\mu = \frac{\tau}{du/dy}$		
The kinematics viscosity v is defined as $V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		and has the units of Pa s.		
$V = \frac{\mu}{\rho}$ sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.				
 p sad has the units of m²/s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids. 				
 p sad has the units of m²/s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids. 		, μ		
sad has the units of m ² /s. Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are non Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.				
Fluids that obey Newton's law of viscosity are called Newtonian fluids. All the others are not Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		r F		
Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, benzene, alcoho carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules are Newtonian such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the other much large than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are common example of non – Newtonian fluids. From τ versus du/dy plots, it is obvious that are viscosity of a non – Newtonian fluid cannot be considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		sad has the units of m^2/s .		
considered a constant independent of du/dy for a given temperature, but must be considered a function of du/dy. There are three common types of non – Newtonian fluids.		Newtonian fluids. All gases and liquids with a simple chemical formula, such as water, be carbon tetrachloride, hexane and ether, are Newtonian. Most solutions of simple molecules such as solutions of inorganic salts, and of sugar in water, Non-Newtonian fluids, on the oth than water molecules. Toothpaste, paints, jellies, gels, slurries and polymer solutions are com-	enzene, alo are Newto her much	cohol, onian, larger
		considered a constant independent of du/dy for a given temperature, but must be considered		
(a) Bingham fluids or Bingham plastics resist a small shear stress indefinitely, but flow easily under large shear stresses. Examples are jellies, toothpaste, paints and some slurries.		(a) Bingham fluids or Bingham plastics resist a small shear stress indefinitely, but flow eas shear stresses. Examples are jellies, toothpaste, paints and some slurries.	ily under	larger

(b) Pseuaoplastic fluids have a viscosity that decreases with an increasing velocity gradient. Examples are blood, polymer solutions, muds and most slurries.

(c) Dilatent fluids have a viscosity that increases with an increasing velocity gradient. They are not common, but starch suspensions in water and suspensions of paper pulp are two examples.

The Bingham fluid can be represented by

$$\tau < \tau_{_0}, \frac{du}{dy} = 0 \qquad \quad \tau {>} \tau_{_0}, \tau - \tau_{_0} = \eta \frac{du}{dy}$$

Where τ_0 is the yield stress, and η is commonly called the coefficient of rigidity.

The experimental curves for both pseudoplastic and dilatant fluids can be represented reasonably well by the power law, also called the Ostwald – de Waele equation

$$\tau = K {\left(\frac{du}{dy} \right)}^n$$

where K and n are arbitrary constants. For Newtonian fluids n=1 and $K=\mu$.

For pseudoplastic fluids n<1, and for dilatant fluids n>1.

Viscosity can change with time: apparent viscosity may decrease with time under shear stress but recover when the shear stress is removed, in which case the substance is said to thixotropic. When it increases with time under may constant shear rate, the fluid is said to be rheopectic. A good paint or printer's ink should be thixotropic in nature. Bentonite sols are examples of rheopectic fluids.

Most applications of fluid flow involve water, air, gases and simple fluids which are Newtonion in behavior. The flow of Newtonian fluids through circular pipes is considered in the following sections.

2A 15cm long cylindrical metal rod slides inside a tube filled with oil. The inner
diameter of the tube is 5cm and the clearance is 0.05 mm. the mass of the bar is 0.5
kg when immersed in the oil. What is the viscosity of the oil, if the steady-state
velocity of the rod is 0.1 m/s?CO1K3

Force acting on the rod,

The area of the rod,

 $A = \pi dl = \pi (0.05)(0.15)$

 $=0.02356 \text{ m}^2$

The shear stress acting on the oil,

$$\tau = \frac{F}{A} = 208Pa$$

Assuming linear velocity distribution

-	
	$\frac{du}{dy} = \frac{\Delta u}{\Delta y} = \frac{0.1}{0.05 \times 10^{-3}} = 20001/s$
	uy ∆y 0.05×10
	Therefore, the viscosity of the oil is given by
	$\tau = \frac{\tau}{1} = \frac{208}{1000}$ Pas
	$\mu = \frac{\tau}{du/dy} = \frac{208}{2000} Pas$
	=0.104 Pa s
3	Derive the Bernoulli's theorem. CO3 K3
	Mechanical Energy Balance for steady Flow: Bernoulli's theorem When a given element of a moving fluid undergoes expansion, it does mechanical work. Clearly, this work must be expended on the fluid immediately ahead of it, but the fluid element in question also picks up an equivalent amount of mechanical energy at the expense of the internal energy of the fluid or externally derived heat. Granting reversibility of expansion, this self – expansion work ∫ P dv is to be included in a mechanical energy balance. Also, when the fluid flows from A to b, some of the energy available at A is converted into frictional heat and becomes unavailable at B. Let this loss due to friction be FJ/kg of the fluid. The mechanical energy balance equation, then, becomes
	$Z_{Ag} + P_A v_A + \frac{u_A^2}{2} - w_s + \int_A^B P dv = Z_{Bg} + P_B V_B + \frac{u_B^2}{2} F$
	since $d(Pv) = Pdv + vdP$
	$P_A V_A - P_B V_B = -\int_A^B P dv - \int_A^B V dP$
	$\therefore \qquad \qquad Z_{Ag} - \int_{A}^{B} V dP + \frac{u_{B}^{2}}{2} - w_{s} = Z_{Bg} + \frac{u_{B}^{2}}{2} + F$
	or $\Delta\left(\frac{u^2}{2}\right) + g\Delta Z + \int_A^B V dP + w_s + F = 0$
	Equation is known as Bernoulli's equation.
	When a fluid flows through a pipeline, the velocity at a point varies over the cross-section of the pipe. When the velocity distribution is uniform across the pipe section, the kinetic energy term is $u^2/2$. where u is the average linear velocity. For the unidirectional flow of a fluid, allowance must be made for the velocity profile in the kinetic energy term. Introducing a correction factor α into the kinetic energy term, Bernoulli's equation becomes
	$\frac{\Delta u^2}{2\alpha} + g\Delta Z + \int v dP + w_s + F = 0$
	where $\alpha=0.5$ if the flow is streamline
	≈ 1.0 if the flow is turbulent
4	Flow of a Fluid past a solid surface
	The local velocities in a fluid stream are profoundly affected when the stream is brought into contact with a solid object or with the wall of a conduit. Consider the flow of a fluid parallel to a thin plate, as shown in fig.

The velocity of the fluid upstream from the leading edge of the plate is uniform across the entire fluid stream and has the value U. The fluid in immediate contact with the plate adheres to it and therefore, the velocity of the fluid at the interface between the solid and the fluid is zero. A velocity gradient at right angles to the surface is set up in the neighborhood of the interface because of the viscous forces acting within the fluid, and the velocity changes in a direction perpendicular to the flow. For a given distance x from the leading edge of the plate, the local velocity u will increase from zero at the surface (y=0)and will gradually approach the free stream velocity U at some distance from the surface. There is a rapid change in velocity near the surface and the thickness of the layer in which the fluid is retarded by i.e. viscous drag becomes grater with the distance form the leading edge in the direction of the flow. The line AB represents an imaginary surface which separates the fluid stream into two parts: one in which the fluid velocity is constant, and the other in which the velocity varies from zero at the wall to a velocity substantially equal to that of the undisturbed flow. This imaginary surface, therefore, separates the fluid that is directly affected by the plate from that in which the local velocities are constant and unaffected by the plate. The layer between the dotted line and the plate is called the prandtl boundary layer. The boundary layer thickness is so defined that the velocity at its outer edge equals 99% of the free stream velocity. The boundary layer thickness is zero at the leading edge and is maximum at the trailing edge.

Any solid body in contact with a flowing fluid will develop a boundary layer, regardless of the shape of the body. Towards the leading edge of the solid, where the boundary layer is thin, the flow in the boundary layer is laminar. As the layer thickness, however, at distances further from the leading edge, a point is reached where turbulence appears. The onset of turbulence is characterized by a sudden increase in the boundary layer thickness.

There is a small region near the surface in the turbulent layer where the flow remains laminar because the velocity in this region, adjacent to the surface, is insufficient to develop turbulence. This is known as the laminar sub-layer. The viscous sub-layer is separated from the highly turbulent zone of the boundary layer by the buffer layer, in which the flow is neither entirely laminar nor entirely turbulent.

For the flow of a fluid past a flat plate at zero incidence, the thickness δ or the boundary layer is given by

$$\frac{\delta}{x} = 4.64 \operatorname{Re}_{x}^{-0.5}$$

If the boundary layer is laminar, and

$$\frac{\delta}{x} = 0.376 \operatorname{Re}_{x}^{-0.2}$$

If the boundary layer is turbulent.

The thickness of the laminar sub-layer δ_1 is given by

$$\frac{\delta_l}{x} = 715 \text{Re}_x^{-0.9}$$

This is, $\delta_1 \alpha x^{0.1}$, and therefore, it increases very slowly as x increases, also, $\delta_1 \alpha U^{-0.9}$, and therefore, it decreases rapidly as the free stream velocity increases. Re_x is defined as

$$\operatorname{Re}_{x} = \frac{xU\rho}{\mu}$$

5 Fluid meters and flow measurement: Orifice Meter

CO5 K2

An orifice meter is extremely simple apparatus. Normally it is a flat plate with a centrally drilled hole beveled to a sharp edge. This drilled plate is inserted perpendicularly to the flow in a duct and the fluid flows right through the hole.

Boundary layer separation occurs down – stream of orifice plate and as a result pressure loss due to form friction is considerable. And at about one half to two duct diameters downstream from the plate, the flow lines reach a minimum cross – sectional area.

This point is called vena contracta. The location of this point depends on the fluid velocity as well as the duct diameter.

The downstream pressure should be tapped closest to this vena contracta to ensure a maximum reading on the pressure – difference indicator.

Applying energy balance between points 1 and 2

$$(P_2 - P_1) \cdot V + \frac{v_2^2 - v_1^2}{2} + \Sigma F = 0$$

$$v = \left\{ 2 \left[\frac{\Delta P}{\rho} - \Sigma F \right] / \left[(A_1 / A_2)^2 - 1 \right] \right\}^{0.5}$$

The sum of $\left(\frac{\Delta P}{\rho}\right)$ and ΣF can be expressed in terms of total pressure drop (ΔP) as

where $A_0 = cross - sectional$ area of the orifice hole and $A_2 = cross - sectional$ area of the vena contracta

$$v = C_1 \cdot \left[\frac{2(\Delta P / \rho)}{\frac{A^2}{C_2 A_0^2} - 1} \right]^{\frac{1}{2}} = C_d \cdot \left[\frac{2(\Delta P / \rho)}{\frac{A^2}{A_0^2} - 1} \right]^{\frac{1}{2}} = C_d \frac{A_0 \sqrt{2\Delta P / \rho}}{\sqrt{A^2 - A_0^2}}$$

where $C_2 = a$ constant of geometry;

...

 C_d = discharge coefficient of orifice and it is such that

$$C_{1} \cdot \left[\frac{1}{\frac{A^{2}}{C_{2}A_{0}^{2}}-1}\right]^{\frac{1}{2}} = C_{d} \cdot \left[\frac{1}{\frac{A^{2}}{A_{0}^{2}}-1}\right]^{\frac{1}{2}}$$

The volumetric flow rate through a normal orifice plate

$$Q_v = C_d \cdot \frac{A_0 \cdot A \cdot k}{\sqrt{A^2 - A_0^2}} \cdot \sqrt{2\Delta P / \rho}$$

For $>> A_0$ the above equation simplifies to

$$Q_{v} = C_{d}.k.A_{0}\sqrt{2\Delta P/\rho} = C_{d}.k.A_{0}.\sqrt{2.g.H\left(\frac{\rho_{MAN}-\rho}{\rho}\right)}$$

The coefficient of discharge C_d for given orifice is the function of Reynolds number (Re) and diameter ratio ($\beta = d_0 / d$).

Re = $\frac{d.v.\rho}{d.v.\rho}$			C _d	$\times 10^{3}$			
μ	$(d_0 / d)^2 0.05$	0.1	0.2	0.3	0.4	0.5	0.6
5×10^{3}	603.2	611	634.1	_	_	_	_
1×10^4	602.6	609.2	626.1	653	689	736.7	797.5
2×10^4	599.6	605	621.2	645.4	676.5	718.6	775.3
3×10^4	599	603.8	618.7	640.3	672	712.4	765
5×10^4	598.4	603.2	616.8	638.4	666.6	705	755
1×10^{5}	598	602.6	616.2	635.9	662	699	747
4×10^5	597.8	602	615	634	660	695	739.8
d_0 = diameter of normal orifice plate, m d = pipe dia (ID), m							

Coefficient of Discharge for Orifice Plate

For $>30\ 000,$ the value of C_d for square – edged or sharp – edged orifice fall in the range 0.595-0.620 for up to 0.8

In the transition resion, Re = 50 - 30000, the coefficient of discharge is higher than the above values.

In the laminar region (Re < 50), $C_d \propto \sqrt{Re}$

k = roughness coefficient of account for roughness of the pipe wall. For smooth pipe, k = 1. For rough pipe, the values of k are tabulated below.

Pipe Dia	$k \times 10^3$							
(ID) mm	$(d_0 / d)^2 0.1$	0.2	0.3	0.4	0.5	0.6		
50	1003	1006	1011	1014	1014	1017		
100	1002	1004	1006	1011	1011	1013		
200	1001	1002	1004	1005	1005	1006		
300	1000	1001	1001	1001	1001	1001		

A₀ = cross – section area of orifice plate = $\frac{\pi}{4}$.d₀² = 0.785.(d₀²)

A = cross – section area of pipe =
$$\frac{\pi}{4}$$
.d² = 0.785 d², m²

H = level difference of the liquid in the differential manometer connected to the orifice plate, m $\rho_{man} =$ density of manometric liquid, kg / m³

Other than sharp – edged or square – shaped orifice, there are:

sharpedged / square coefficients in the low up stream side of the thickness at the orific (ii) Segmental and Ecce	 sharpedged / square – shaped counterparts in the sense that they have constant discharge coefficients in the lower values of Reynolds number. They have holes with round edges on the up stream side of the plate. The diameter of quadrant – edge orifice is equal to half the plate thickness at the orifice location. (ii) Segmental and Eccentric Orifices: are frequently used for metering gas flow, particularly in 									
those cases, where the	those cases, where there is the likelihood of entrainment of liquids or solids.									
Orifice		Reynolds Number	β	C _d						
Square – edged mental		> 10000	0.3 - 0.5	0.63 - 0.64	_					
Square – edged eccentric cir		> 10000	0.3 - 0.5	0.61 – 0.63						
(iii) Annular Orifices have proved to be useful for metering Paragraph (1) gas where there are chances of liquid or solid entrainment paragraph (2) liquid with entrained gas present in minor concentrations. $C_d = 0.63 - 0.67$ for Re=100 - 20000 and for $\frac{2\Delta}{d-d_0} < 1$ where Δ = thickness of orifice at outer edge, m; d= inside pipe dia, m;										
$d_0 = orifice disk dia, m$										
6 Fluid meters and flow measurer	nent: Pitot Tuł	De		CO5	K2					
and static pressure. It consists to two concent	It consists to two concentric tubes. The outer tube has a few small perforations perpendicular to the flow direction. There are called static pressure openings. The inner tube has a small opening pointed to the									
and the fluid is led through the per- except for a manometric lead.	When fitted to a flow duct, the Pitot – tube has its two concentric tubes arranged parallel to the flow and the fluid is led through the perforations of the outer tube to the annular space which is otherwise sealed except for a manometric lead. The other side of the manometer is connected the inner tube figure. The annular space serves to transmit the static pressure.									
impact pressure equivalent to the	At the entrance to the inner tube, the flowing fluid is brought to rest and the tube transmits the impact pressure equivalent to the kinetic energy of the flowing fluid. When the equilibrium is reached there is no fluid motion within the Pitot tube.									
figure through which the fluid is t	The Pitot tube, also known as Pitot – Pradt1 tube, is installed exactly along the axis of the pipe figure through which the fluid is flowing. And an energy balance may be drawn between points 1 and 2. At point 2 the fluid velocity is zero and also $Z_1 = Z_2$ and therefore, the energy balance simplifies to									
		$+\frac{v_1^2}{2}+\sum F=0$								
	$v_1^2 = 2 \left[\left(A \right] \right]$	$\Delta P/\rho - \Sigma F$	where $P_1 - P_2 =$	$= \Delta P$						
The bracketed term of the right hand side of the equation can be expressed in terms of total pressure difference (ΔP) i.e.										
	$\left[\left(\Delta P/\rho\right)\right]$	$-\Sigma \mathbf{F}$] = $\mathbf{C}_{1}^{2}.(\Delta \mathbf{P}/\rho)$								

Putting $v_1 = v_1$, the average velocity of flow through the orifice

$$\nu = C_1 \cdot \sqrt{2(\Delta P / \rho)} = C_1 \cdot \sqrt{2.g.H.(\rho_{man} - \rho) / \rho}$$

The rate of flow Where, A = cross, sectional area of the pipe, m^2

v = mean velocity of flow through the pipe, m/s. It is calculated from ν / ν_{max} ratio obtained from the ν / ν_{max} vs. Re graph where

Re = d.v_{max}.
$$\rho / \mu$$

 $v_{max} = \sqrt{2.g.H \frac{(\rho_{man} - \rho)}{\rho}}, m/s$
(taking C₁ ≈ 1)

The differential manometer is attached to the Pitot tube to determine the value of

$$\Delta P = H.(\rho_{man} - \rho).g = \Delta P_{vel}$$

Pitot – tubes have certain limitations on the range of their usefulness. With gases, the differential pressure Δ P is very small at low velocities introducing significant degree of error even using a micro – manometer with a precision of 0.25 mm of water.

With liquids, operation at low Reynolds number needs prior calibration of the probe. $C_d < 1$ for Re < 2300.

Fluid meters and flow measurement: VenturimeterCO5K2A venturimeter is a flow – metering device. It measures a flow rate of the fluid flowing through a pipe. It consists of:It measures a flow rate of the fluid flowing through a pipe.

(a) A short converging part (b) a throat (c) a long diverging part

Applying Bernoulli's equation at section 1 and 2 we get,

$$\frac{P_1}{\rho \cdot g} + \frac{v_1^2}{2g} + Z_1 = \frac{P_2}{\rho \cdot g} + \frac{v_2^2}{2g} + Z_2$$

assuming the flow to be non -compressible and isothermal.

It can be installed horizontally, vertically or inclined to a pipeline.

 $\frac{P_1 - P_2}{\rho.g} = \frac{v_2^2 - v_1^2}{2g}$

 $P_1 - P_2 = H.\rho.g$

 $v_2^2 - v_1^2 = 2.g.H$

Since the pipe is horizontal, $Z_1 = Z_2$

But ∴

...

7

where H is the manometer reading.

For continuity of mass flow v_1 . ρ_1 . $A_1 = v_2$. ρ_2 . A_2

$\therefore \qquad v_1 = A_2 . v_2 / A_1 \left[cf. \rho_1 = \rho_2 \text{ for incompressible } \right]$	fluid]															
$\therefore \qquad \mathbf{v}_2 = \frac{\mathbf{A}_1}{\sqrt{\mathbf{A}_1^2 - \mathbf{A}_2^2}} . \sqrt{2g.\mathbf{H}}$																
Therefore, volumetric flowrate $Q'_v = v_2 \cdot A_2 = \frac{A_1}{\sqrt{A_1^2 - A_2^2}} \cdot \sqrt{2g \cdot H}$ This is the theoretical volumetric flowrate. Therefore, actual volumetric flowrate $Q_v = C_d \cdot \frac{A_1 \cdot A_2}{\sqrt{A_1^2 - A_2^2}} \cdot \sqrt{2g \cdot H}$ $Q_m = C_d \cdot \frac{A_1 \cdot A_2 \cdot \rho}{\sqrt{A_1^2 - A_2^2}} \cdot \sqrt{2g \cdot H}$																
								$=C_{d} \cdot \frac{A_{2} \cdot \rho}{\sqrt{1 - (A_{2} / A_{1})^{2}}} \cdot \sqrt{2g.H}$								
								=C _d .C.p.√2g.H								
								where, C _d =coefficient of discharge; C' = constant for the meter = $A_2 / \sqrt{1 - (A_2 / A_1)^2}$	where, C _d =coefficient of discharge; C' = constant for the meter = $A_2 / \sqrt{1 - (A_2 / A_1)^2}$							
H _v =loss of head over the converging cone, m 8 Dry air at 20°C and 1 atm pressure flows through a pipe of ID 320 mm. A Pitot- Prandtl tube is installed at the middle of the pipe. Its differential manometer with water shows a level difference of,																
H=5.8 mm																
Calculate the mass flowrate of air. Solution: First we're to calculate the v _{max} with the help of the equation.																
Next we're to determine the Reynolds number at this value of maximum velocity																
Finally we're to determine the ratio of v/v_{max} from the figure for the con- Reynolds number.	Finally we're to determine the ratio of v/v_{max} from the figure for the corresponding value of Reynolds number. The mean velocity (v) of flow through the pipe being known, the volumetric flowrate and mass flowrate of air can be easily computed.															
Step-(I). Minimum Flow Velocity																
$v_{max} = \sqrt{2g.H\left[\frac{\rho_{man}-\rho}{\rho}\right]}$																
$= \sqrt{2(9.81) \left(\frac{5.8}{1000}\right) \frac{(1000 - 1.205)}{1.205}} m/s = 9.712 m/s$																
Step-(II). Reynolds Number																
Re=d.v _{max} . ρ/μ =(320/1000)(9.712)1.205/(18 × 10 ⁻⁶)=2.08 × 10 ⁵																

Step-(III) Average Velocity of Air From the graph figure $v/v_{max} = 0.85$ for the corresponding value of Re= 2×10^5 V = (0.83) (9.712 = 8.0609 m/s)**Step-(IV)** Volumetric Flowrate (Q_v) $Q_v = A.v = \frac{\pi}{4}.D^2.v = \frac{\pi}{4} \left[\frac{320}{1000}\right]^2 (8.0609) = 0.64829 \text{ m}^3/\text{s}$ **Step-(V)** Mass Flowrate (Q_m) $Q_m = Q_v$; $\rho = 0.64829 (1.205) = 0.78119 \text{ kg/s} = 2812.30 \text{ kg/h}$ 9 Crude oil, specific gravity $60^{\circ}F/60^{\circ}F = 0.887$, flows through the piping shown in figure. Pipe A is 2-in. (50-mm) Schedule 40, pipe B is 3-in. (75-mm) Schedule 40, and each of pipes C is $1\frac{1}{2}$ -in. (38-mm) Schedule 40. An equal quantity of liquid flows through each of the pipes C. The flow through pipe A is 30 gal/min (6.65 m^3/h). Calculate (a) the mass flow rate in each pipe, (b) the average linear velocity in each pipe, and (c) the mass velocity in each pipe. Solution:-Dimensions and cross-sectional areas of standard pipe are given in Appendix 5. Cross-sectional areas needed are, for 2-in. pipe, 0.0233 ft²; for 3-in. pipe, 0.0513 ft²; and for 1¹/₂-in. pipe, 0.01414 ft². (a) The density of the fluid is $\rho = 0.887 \times 62.37 = 55.3 \text{ lb/ft}^3$ Since there are 7.48 gal in 1 ft^3 (Appendix 3), the total volumetric flow rate is $q = \frac{30 \times 60}{7.48} = 240.7 \text{ ft}^3 / \text{h}$ The mass flow rate is the same for pipes A and B and is the product of the density and the volumetric flow rate, or $\dot{m} = 240.7 \times 55.3 = 13,300 \text{ lb/h}$ The mass flow rate through each of pipes C is one-half the total or 13,300/2 = 6650 lb/h (0.8379 kg/s). (b) The velocity through pipe A is $\overline{V}_{A} = \frac{240.7}{3600 \times 0.0233} = 2.87 \text{ft/s.}$ through pipe B is $\overline{V}_{B} = \frac{240.7}{3600 \times 0.0513} = 1.30 \text{ ft/s}$ and through each of pipes C is

$$\overline{V}_{c} = \frac{240.7}{2\times 3600 \times 0.01414} = 2.36 \text{ ft/s.}$$
(c) The mass velocity through pipe A is
$$G_{A} = \frac{13,300}{0.0233} = 571,000 \text{ lb/ft}^{2} - h (744 \text{ kg/m}^{2} - \text{s})$$
through pipe B is
$$G_{B} = \frac{13,300}{0.0513} = 259,000 \text{ lb/ft}^{2} - h (351 \text{ kg/m}^{2} - \text{s})$$
and through each of pipes C is
$$G_{C} = \frac{13,300}{2\times 0.01414} = 470,000 \text{ lb/ft}^{2} - h (351 \text{ kg/m}^{2} - \text{s})$$
Momentum Balance In Potential Flow; The Bernoulli Equation Without Friction
An important relation, called the Bernoulli equation without friction, can be derived by applying the momentum balance to the steady flow of a fluid in potential flow.
Consider a volume element of a stream tube within a larger stream of fluid in steady potential flow, as shown in figure. Assume that the cross section, pressure, linear velocity, and let whe entrance by S, p. u, and Z, respectively, and let the corresponding quantities at the exit bs 4 + AS, p + A, u + Au, and Z + AZ. The axial length is ΔL , and the constant fluid density is ρ . The constant mass flow rate through the tube is ft h. Use $\sum F = \frac{\dot{m}\Delta U}{g_{c}}$
The pressure forces normal to the cross section of the tube at the isft and outlet of the tube, with the terminology of Equation, are:
$$p_{a}S_{a} = pS \qquad p_{a}S_{b} = (\rho + \Delta p)(S + \Delta S)$$
Since the side of the tube is not parallel to the axis, the pressure at the side possesses a component in the axid direction acting to increase momentum. Let AA be an element of AA situ w, where V is the angle between the axis and the pressure vector at dense to the submomentum. Let AA be an element of AA situ V where V is the angle between the axis and the pressure vector at the sufface element. The pressure force is the othe cross section at the disc and the cross section at the disc and pressure vector at dense to V is the angle between the axis and the pressure vector at dense the flow is potential, there is no shear force and the local pressure vector at lement AA . But AA sin V , where V is the angle between

where \overline{p} , the average value of the pressure surrounding the tube, has a value between p and $p + \Delta p$.

The only other force acting on the flowing fluid is the component of gravity acting along the axis. The volume of the tube may be written as $\overline{S} \Delta L$, where \overline{S} is the average cross section, which has a value between S and S + Δ S. Then the mass of fluid in the tube is $\overline{Sp} \Delta L$. The component of the gravitational force opposite to the direction of flow is

$$F_{g} = \frac{g}{g_{c}}\overline{S}\rho \Delta L \cos \phi$$

Since $\cos \phi = \Delta Z / \Delta L$,

$$\mathbf{F}_{g} = \frac{\mathbf{g}}{\mathbf{g}_{c}} \,\overline{\mathbf{S}} \rho \,\,\Delta \mathbf{L} \frac{\Delta \mathbf{Z}}{\Delta \mathbf{L}} = \frac{\mathbf{g}}{\mathbf{g}_{c}} \,\overline{\mathbf{S}} \rho \,\,\Delta \mathbf{Z}$$

Substitution from Equation gives

$$\frac{m}{g_{c}}\Delta u = \Delta S \left(\overline{p}' - p \right) - S \Delta p - \Delta p \Delta S - \frac{g}{g_{c}} \overline{S}_{p} \Delta Z$$

Dividing equation by $\rho S \Delta L$ yields

$$\frac{\dot{m}}{g_{c}\rho S}\frac{\Delta u}{\Delta L} = \frac{\overline{p} - p}{\rho S}\frac{\Delta S}{\Delta L} - \frac{1}{\rho}\frac{\Delta p}{\Delta L} + \frac{\Delta S}{\rho S}\frac{\Delta p}{\Delta L} - \frac{g}{g_{c}}\frac{\overline{S}\Delta Z}{S\Delta L}$$

Now find the limits of all terms in equation as $\Delta L \rightarrow 0$. Then $\Delta S \rightarrow 0$, $\overline{S} \rightarrow S$, $\overline{p}' - p \rightarrow 0$, and the ratios of increments all become the corresponding differential coefficients, so that, in the limit,

$$\frac{\dot{m}}{g_c \rho S} \frac{du}{dL} = -\frac{1}{\rho} \frac{dp}{dL} - \frac{g}{g_c} \frac{dZ}{dL}$$

The mass flow rate is

$$\dot{\mathbf{m}} = \mathbf{u}\rho\mathbf{S}$$

Substituting in equation gives

$$\frac{u\rho S}{g_c\rho S}\frac{du}{dL} = -\frac{1}{\rho}\frac{dp}{dL} - \frac{g}{g_c}\frac{dZ}{dL} = 0$$

and

$$\frac{1}{\rho}\frac{dp}{dL} + \frac{g}{g_c}\frac{dZ}{dL} + \frac{d\left(\frac{u^2}{2}\right)}{g_c dL} = 0$$

Equation is the point form of the Bernoulli equation without friction. Although derived for the special situation of an expanding cross section and an upward flow, the equation is applicable to the general case of constant or contracting cross section and horizontal or downward flow (the sign of the differential dZ corrects for change in direction).

When the cross section is constant, u does not change with position, the term $d(u^2/2)/dL$ is zero, and equation becomes identical with equation for a stationary fluid. In unidirectional potential flow at a constant velocity, then, the magnitude of the velocity does not affect the pressure drop in the tube; the pressure drop depends only on the rate of change of elevation. In a straight horizontal tube, in consequence, there is no pressure drop in steady constant-velocity potential flow.

The differential form of equation is

$$\frac{\mathrm{d}p}{\rho} + \frac{g}{g_{c}}\mathrm{d}Z + \frac{1}{g_{c}}\mathrm{d}\left(\frac{\mathrm{u}^{2}}{2}\right) = 0$$

Between two definite points in the tube, say stations a and b, equation can be integrated, since ρ is constant, to give

$$\frac{p_a}{\rho} + \frac{gZ_a}{g_c} + \frac{u_a^2}{2g_c} = \frac{p_b}{\rho} + \frac{gZ_b}{g_c} + \frac{u_b^2}{2g_c}$$

Equation is known as the Bernoulli equation without friction.

11 Water with a density of 998 kg/m³ (62.3 lb/ft³) enters a 50-mm (1.969-in.) pipe fitting horizontally, as shown in figure, at a steady velocity of 1.0 m/s (3.28 ft/s) and a gauge pressure of 100 kN/m² (2088.5 lb_f/ft²). It leaves the fitting horizontally, at the same elevation, at an angle of 45° with the entrance direction. The diameter at the outlet is 20mm (0.787 in.). Assuming the fluid density is constant, the kinetic-energy and momentum correction factors at both entrance and exit are unity, and the friction loss in the fitting is negligible, calculate (a) the gauge pressure at the exit of the fitting and (b) the forces in the x and y directions exerted by the fitting on the fluid.

Solution:-

(a) $\overline{V}_a = 1.0$ m/s. From equation,

$$\begin{split} \overline{V}_{b} &= \overline{V}_{a} \left(\frac{D_{a}}{D_{b}} \right)^{2} = 1.0 \left(\frac{50}{20} \right)^{2} = 6.25 \text{ m/s.} \\ p_{a} &= 100 \text{ kN/m}^{2} \end{split}$$

The outlet pressure p_b is found from equation. Since $Z_a = Z_b$ and h_f may be neglected, equation becomes,

$$\frac{\mathbf{p}_{a}-\mathbf{p}_{b}}{\rho}=\frac{\overline{V}_{b}^{2}-\overline{V}_{a}^{2}}{2}$$

from which

$$\begin{split} p_{b} &= p_{a} - \frac{\rho \Big(\overline{V}_{b}^{2} - \overline{V}_{a}^{2} \Big)}{2} = 100 - \frac{998 \Big(6.25^{2} - 1.0^{2} \Big)}{1000 \times 2} \\ &= 100 - 18.99 = 81.01 \text{ kN/m}^{2} \Big(11.75 \text{lb}_{f} / \text{in.}^{2} \Big) \end{split}$$

Note that g_c is omitted when working in SI units (but g is not).

(b) The forces acting on the fluid are found by combining equations.

For the x direction, since $F_g = 0$ for horizontal flow, this gives

$$\dot{m}\left(\beta_{b}\overline{V}_{b,x}-\beta_{a}\overline{V}_{a,x}\right)=p_{a}S_{a,x}-p_{b}S_{b,x}+F_{w,x}$$

Where $S_{a,x}$ and $S_{b,x}$ are the projected areas of S_a and S_b on planes normal to the initial flow direction. (Recall that pressure p is a scalar quantity.) Since the flow enters in the x direction, $\overline{V}_{a,x} = \overline{V}_a$ and

$$S_{a,x} = S_a = \frac{\pi}{4}0.050^2 = 0.001964 \text{ m}^2$$

$$\overline{V}_{b,x} = \overline{V}_{b} \cos \theta = 6.25 \cos 45^{\circ} = 4.42 \text{ m/s}.$$

Also

$$S_{b,x} = S_b \sin \theta = \frac{\pi}{4} 0.020^2 \sin 45^\circ = 0.000222 \text{ m}^2$$

From equation

$$\dot{m} = \overline{V}_a \rho S_a = 1.0 \times 998 \times 0.001964 = 1.960 \text{ kg/s}.$$

Substituting in equation and solving for $F_{w,x}$, assuming $\beta_a = \beta_b = 1$, gives

$$F_{w,x} = 1.96(4.42 - 1.0) - 100,000 \times 0.001964 + 81,010 \times 0.000222$$
$$= 6.7 - 196.4 + 18.0 = -171.7N(-38.6 \text{ lb}_{f})$$

Similarly for the y direction, $\overline{V}_{a,y} = 0$ and $S_{a,y} = 0$, and

$$\overline{V}_{b,y} = \overline{V}_b \sin \theta = 4.42 \text{ m/s}$$
 $S_{b,y} = S_b \cos \theta = 0.000222 \text{ m}^2$

Hence

$$\begin{split} F_{w,y} &= \dot{m} \Big(\beta_b \overline{V}_{b,y} - \beta_a \overline{V}_{a,y} \Big) - p_a S_{a,y} + p_b S_{b,y} \\ &= 1.96 \; (4.42 - 0) - 0 + 81.01 \; \times \; 0.000222 \; \times 1000 \\ &= 8.66 + 17.98 = 26.64 \; N \; (5.99 \; lb_f) \end{split}$$

A pump draws a solution of specific gravity 1.84 from a storage tank through a 3-in. (75-mm) Schedule 40 steel pipe. The efficiency of the pump is 60 percent. The velocity in the suction line is 3 ft/s (0.914 m/s). The pump discharges through a 2-in. (50-mm) Schedule 40 pipe to an overhead tank. The end of the discharge pipe is 50 ft (15.2 m) above the level of the solution in the feed tank. Friction losses in the entire piping system are 10ft-lb_f/lb (29.9 J/kg). What pressure must the pump develop? What is the power of the pump?

Solution:-

Take station *a* at the surface of the liquid in the tank and station b at the discharge end of the 2-in. pipe. Take the datum plane for elevations through the station *a*. Since the pressure at both stations is atmospheric, $p_a = p_b$. The velocity at station *a* is negligible because of the large diameter of the tank in comparison with that of the pipe. For turbulent flows the kinetic-energy factor α can be taken as 1.0 with negligible error. Equation becomes

$$W_{p}\eta = \frac{g}{g_{c}}Z_{b} + \frac{\overline{V}_{b}^{2}}{2g_{c}} + h_{f}$$

By Appendix 5, the cross-sectional areas of the 3- and 2-in. pipes are 0.0513 and 0.0233 ft², respectively. The velocity in the 2-in. pipe is

$$\overline{V_{b}} = \frac{3 \times 0.0513}{0.0233} = 6.61 \text{ ft/s}$$

Then

$$0.60W_p = 50\frac{g}{g_c} + \frac{6.61^2}{64.34} + 10 = 60.68$$

and

$$W_{p} = \frac{60.68}{0.60} = 101.1 \text{ ft-lb}_{f} \, / \, \text{lb}$$

The pressure developed by the pump can be found by writing Equation over the pump itself. Station *a* is in the suction connection and station b is in the pump discharge. The difference in level between suction and discharge can be neglected, so $Z_a = Z_b$ and equation becomes

$$\frac{p_{b}-p_{a}}{\rho}=\frac{\overline{V}_{a}^{2}-\overline{V}_{b}^{2}}{2g_{c}}+W_{p}\eta$$

The pressure developed by the pump is

$$p_{b} - p_{a} = 1.84 \times 62.37 \left(\frac{3^{2} - 6.61^{2}}{2 \times 32.17} + 60.68 \right)$$

= 6902 lb_f / ft² or
$$\frac{6902}{144}$$
 = 47.9 lb_f / in² (330 kN/m²)

The power used by the pump is the product of W_p and the mass flow rate divided by the conversion factor, 1 hp = 550 ft-lb_f/s. The mass flow rate is

$$\dot{m} = 0.0513 \times 3 \times 1.84 \times 62.37 = 17.66$$
 lb/s

and the power is

$$\mathsf{P} = \frac{\dot{\mathsf{m}}\mathsf{W}_{\mathsf{p}}}{550} = \frac{17.66 \times 101.1}{550} = 3.25 \text{hp} \ (2.42 \text{ kW})$$

- Derive the Hagen Poiseuille's formula for pressure drop over a length of a pipeline. (April/May 2010, May/June 2009, Nov/Dec 2007) (16)
- Draw a neat sketch for centrifugal pump and explain its working principle and give its application. (16) (Nov/Dec 2009) (16)
- **3.** Derive the working principle of reciprocating pump with neat sketch showing all components (*Nov/Dec* 2009)