

Reg. No. :

Name :

Third Semester B.Tech. (Reg./Sup./Imp. – Including Part Time) Degree Examination, November 2014 (2007 Admn. Onwards) PT 2K6/2K6 EC/AEI 304 : SOLID STATE DEVICES

Time: 3 Hours

Max. Marks: 100

Instructions: 1) Answer all questions.

- 2) Part A each question carries 5 marks.
- 3) Part **B each** question carries **15** marks.

PART-A

l. a)	Differentiate between direct and indirect semi conductors.	5
b)	Explain fermi dirac distribution function.	5
c)	Explain contact potential.	5
d)	Draw the energy band diagrams for a PN junction :	5
	a) Equilibrium	
	b) Forward bias	
	c) Reverse bias.	
e)	Explain Kirk effect.	5
f)	Discuss Avalonce breakdown in transistors.	5
g)	Discuss load line concept with respect to FET.	5
h)	Define mutual trans conductance in JFET.	5
	(8×	:5=40)

M 25933

PART-B

11.	a)	Describe Fermi-Dirac distribution function applied to semi conductor :	15
		i) Intrinsic type material	
		ii) N type material	
		iii) P-type material.	
		OR	
is a	b)	Describe temperature dependance of carrier concentration.	15
111.	a)	Briefly describe Graded junction. Why graded junction approximation is preferred over abrupt junction ? OR	15
	b)	Explain Schottky barriers.	15
IV.	a)	Discuss Eber Moll model for explaining large signal behaviour of transistors. OR	15
	b)	Explain charge control analysis of transistors.	15
V.	a)	Explain in detail the structure of N channel MOSFET. OR	15
	b)	Explain in detail the operation of N channel MOSFET with neat sketches for the following operating conditions.	15
		i) Linear region for $V_{G} > V_{T}$ and $V_{D} < V_{G} - V_{T}$	
		ii) Onset of saturation at pinch off	
		iii) Strong saturation $V_G > V_T$ and $V_D > V_G - V_T$. (15×4=	60)