b

UNIT-III
TREES
Introduction: A tree is a finite set of one (or) more nodes . such that
* There is a specially designated node called root node.
* Remaining nodes are partitioned into “n « disjoint sets .T1,T2.......... Tn are called sub
trees of the nodes. /R(’Ot node
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Ex:

Root node:- The first node of a tree is called as root node.Every tree must have a root
node , which is only one.
ex:-In the above figure, ‘A’ is the root node.
Paremt: Parent of a node is the predecessor of a node.
e%:- In the above diagram B is the parent node of E,F.
Child: The immediate successor of a node is called as child
ex:-In the figure H,1,J childrens of D
leaf node: A node with no children is called as leaf node
ex:-In the above diagram E, K,L , G H,I,J,
Non terminal nodes:- A node with a child node is called as non terminal node,.
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P ex:-In the above example B,C,D,F. are non terminal nodes
I'Q : Sibling:- The children of same parent node is called as sibling
h ex:-In the above example H,1,J are siblings of parent D
o Edge:- The link between a parent node and it’s child is called as edge
P ex:-In the above example (A,B ) (A,C) (A,D) (B,E)......... are edges
T Degree of a node:- The no of child nodes for a given node is called as degree of a
2 node.
iQ ex:- From the above figure degree of a D is a 3, degree of F is 2
i"‘ Degree of tree: Maximum no.of children that is possible for a node in a tree is known
" as degree of a tree.
i*a In the above tree degree of tree is ‘3 * ‘ ‘
=l Level:- Level is the length of the hirarchi from root node. root node is termed as in level
!* “0”.ifanode is at level L then it’s child is at level L+1, and parent is at level L - 1.This
._‘ TR | is true for all the nodes except the rootnode.

level 0

— level 1




/_&ﬁéﬁr" tree: A binary tree is a tre

Height:- Maximum number of nodes th
leaf node is called as height of the tree.
Ex: Inthe above figure height of the treeis 4 i.e

at is possible in path starting from root node to

A=>B=> F=> K

%Wz—
eneration:

All the nodes at particular leve]

i is sai eneration _
EX: in the above tree E,F,GH,LJ are same . s said to be same g

eneration

e, i ildren less than
or equal to 2(0,1,2) n which a every node must have children

Comple_;&binarv tree:-

A bingry tree is a said to be complete binary tree if all it’s level except the last level have

the maximum no.of the nodes.The bottom level is filled from left to right.
EX:

Properties of binary tree: :

* In any binary tree maximum no.of nodes in a level L is 2L where L>=
* Mxamium no.of nodes possible in a binarytree of height ¢ h ¢ is 2h-1.

* Minimum no.of nodes possible in a binary tree of height ¢ h ¢ is 2h.

Left skewed binary tree:- -
A binaty tree having left sides node only is called as left skewed binary tree
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*Right skewed binary tree:-
A binary trec having right side node only 1s called as right skewed binary tree.

ex:- e

©

note:- For any non empty full binary tree, if n is the number of nodes and ¢ 'is number
of edge then n = e+1

ain Representation of binary tree ?

There are two common methods used for representing binary trees.They are
* Linear representation using arrays .
*Linked representation using pointers

Linear representation using arrays:

Thlgsvtype of representation is static i.e is a block of memory for an array is to be allo-
cated before going to store the actual tree values.

_In this representation the nodes are stored level by level i.e; starting from the zeroth
level where only root node is present.The root node is stored in the first memory alloca-
tion. In this representation the array index starts from one following the rules can be used
to decide the location of any node of a tree in the array.

1. The root node is at location one
2. For any node with index i
a) PARENT (i) = [i/ 2]; for the node when i=1 there is no parent.
b)LCHILD (i) =2%*i;if 2*i > nthen ‘i * has no left child
c)RCHILD (i) = 2*i+1 ;if 2*i+1 >n then ‘i > has no right child
Example:-

(a) Binary Tree

A|B|C|ID[E[F|G| v H| I

1 234567891011 12 13 14 15
(b) Array representation of binary tree
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A binary tree of height ‘h” can have atmost (2"-1) nodes.so the S12€ of the array

binary tree is (2" -1) locations.
Example:- If h=3, the size of the array is 23-]1 = 8-1 = 7 locations.
Linked representation of binary trees:-

In linked representation of binary trees, we use node. The gener

al representation of

node as shown below e E
oo}
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(c) Logical view of the linked representation of Binary Tree

Left child address <—— Data ——right child address

In the above representation two link fields are used to store address of left child and
right child of a node. Data is the original content of the node. With this representation, if we
know the address of the root node then it is easy to access other nodes in a binary tre’e

= Advantages of Sequential representation of a_binary tree :-

)Data are stored only without any pointers to their success or ancestor which are men-

ny node can be accessed from any other node by calculating the index and this is
ient from execution point of view. '
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. step3: stop

Disadvantages of sequential re wresentation of a binar tree:-
1)Other than full binary tree, majority of the array entires m
2)It allows static representation there is no w

Explain Tree traversal methods ?
Tr

ce traversal methods  Traversing means to visit each and every node in the tree
exactly once. There are three types of traversal methods. They are
1) Pre order traversal
2) In order traversal
3) post order traversal
Pre-order traversal:- In this traversal, root is first visit
order traversal and then right sub-tree in pre order travers

ay be empty.
ay to enhance the tree structure.

ed and then left sub-tree in pre-
al. It can be defined as follows

* Visit the root node ‘R’
* Traverse the left sub-tree of ‘R’ in pre-order
* Traverse the right sub-tree of ‘R’ in pre-order.

Alggrithm:
preé-order(root) Ex
,s‘ie . start @
step2:if(root) then
visit “ root.data «
pre-order(root.l link) Q o :
pre-order(root.r link) Pre:-A,B,C
step3: stop

[root [ left | right]

In order tranversal :-In this traversal, first visit the left sub-tree in order traversal and then
visit the root node. and then visit the right sub-tree of a root node

in order traversal. It is
defined as follows

* Traverse the left sub-tree of the root node ‘R’ in Inorder.
* Visit the root node ‘R’.

* Traverse the right sub-tree of the root node ‘R’ in Inorder.

Mooy [left | root [ right]
in-order(root)

Ex
stepl: start . o

step2: if(root) then
in-order(root.l link)
visit “ root.data «
in-order(root.r link) In:-B,A,C




. . en right sub-
Post-order Traversal:- In this Traversal , first visit the left sub-trce and th &

tree, and at last visit the root node.It is defined as below

. * Traverse the left sub-tree of the root node ‘R’ in post order
* Traverse the right sub-tree of the root node ‘R’ in post order
* Visit the root node ‘R’.

Algorithm:

post-order(root)

stepl: start

step2: if(root) then

' post-order(root.l link)

post-order(root.r link)
visit “ root.data *

step3: stop

pre:- A,B,D,E,CFG , Pre:- A,B,D,E,C,F1,G
In:i- D,B,EAJFC,G In:- D,B,EALFC,G
Post:- D,E,B,F,GC,A Post:- D,E,B,LLF,G,C,A

plain Binary scarch tree (BST) ?

A binary tree “T” is called as binary scarch tree if cach node *N” of *T” satisfy the
following property.
“The value at ‘N’ is greater than cvery value in the lefl subtree of ‘N” and value at *N’ is
less than every value in the right subtrec of ‘N’ *,

Ex:- @
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Creation of Binary search tree:
Binary search tree having two characteristics:
(1) All the nodes in a left sub tree having values Jess then root node

(2) All the nodes in a right sub tree having valyeg greater then root node.

Suppose we want to construct binary search tree for following set of data:
45 68 3542 1564 78

Step 1: First element is 45 so it is inserted as a oo

Step 2: Now we have to insert 68. First we compare 68 with the root node which is 45. Since
the value of 68 is greater then 45 so it is inserted to the right of the root node.

@5)
@

Step 3: Now we have to insert 35. First We compare 35 with the root node which is 45. Since
the value of 35 is less then 45 so it is inserted to the left of the root node.

P Q‘
(3 ©®

Step 4: Now we have to insert 42. First we compare 42 with the root node which is 45. Since
the value of 42 is less then 45 so it is inserted to the left of the root node. But the root node

has already one left node 35. So now we compare 42 with 35. Since the value of 42 is greater
then 35 we insert 42 to the right of node 35.

@5)

35 €
@2

Step 5: Now we have to insert 15. First we compare 15 with the root node which is 45. Since
the value of 15 is less then 45 so it is inserted to the left of the root node. But the root node

has already one left node 35. So now we compare 15 with 35. Since the value of 15 is less
then 35 we insert 15 to the left of node 35.

@s)

35 ©®
@ @

..~ Step 6: Now we have to insert 64. First we compare 64 with the root node which is 45. Since

~* - the value of 64 is greater then 45 so it is inserted to the right of the root node. But the root

- ‘node has already one right node 68. So now we compare 64 with 68. Since the value of 64 is
. less then 68 we insert 64 to the left of node 68.

t node of the tree.
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Step 7: Now we have to insert
the value of 78 is greater then
- node has already one right
greater then 68 we insert

ALGORITHEM: BST - Creation

step-1: start -
step-2: ptr= root, flag=false

step-3 .:’Wﬁ‘[le (ptr !=null) and (flag=flase) do

case: ( item<ptr.data)
ptrl = ptr;
ptr = ptr.Lchild;
case:( item>ptr.data)
ptrl = ptr;
ptr = ptr.rchild;
case: ( ptr.data = item)
flag = true;

print “ item already exist”;

Exist;
end cases
end while
step-4: if (ptr=null) then
{

new= GET NODE (NODE)

new.data = item;
new.Lchild =null;
new.rchild = null;

L }

_ step-5: if ( ptr. data < item ) then
: 1 ptrl.rchild = new;

78. First we compare 78 with the root node which is 45. Since

45 so it is inserted to the right of the root node. But the root
node 68. So now we

78 to the right of nod

compare 78 with 68. Since the value of 78 is
€68,
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We can perform the following operations on binary search tree.
1) Searching a node

2) Inserting a node

3) Deleting a node

Searching a node:-

Searching a particular node is available (or) not in a binary search tree is called as
searching operation.

In a binary search tree “T”, * item’ be the searching element. The searching proce-
dure as follows.

searching starts from root node ‘R’. If ‘item’ is less than the value in the root node
, we proceed to its left child. if the *item’ is greater than the value in the root node ‘R,
we proceed to its right child. This process will be continued until the item is found or not. If
the item is found then it returns address of the node otherwise it display a message “item
does not exit in the binary search tree”.
Algorithm:- BST-search (item)
step 1 : start
step 2 : ptr = root , flag = False
step 3 : while ((ptr ! =NULL) or (flag = false) ) do 100
~case : ( Item < ptr.data )
'ZV): ptr = ptr.child il 68102
case : ( Item = ptr.data ) 101 ' 102
ﬂag=Trued ; 103|119 (104 N |74 N
case : ( Item > ptr.data )
ptr = ptr.child 103 104
endcase N [15|N N |28 | N
End while
step 4 : if ( flag = true ) then
print (“item has found”,ptr)
else
print (“item does not exist in the tree”);
end if
step 5 : Stop
Inserting a node:-

Inserting a node into binary search tree is called as insertion. To insert a node into
binary search tree, the tree is to be searched starting from the root node. If item is not
found then insert the new node at the dead end.

Example:-

TV REI *

v

For example use the following diagram

Before insertion after insertion

bbbbbbbbdbbbbbbhdbbbobosbbbbbbbblbs]
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i i : : tree. So , search
2 n, if we we : : binary search D. 5
In the above diagram , vant to insert a node 5 in 0 < that sight child is null

processor starts from root node like 6-2-4 then it halts when it finds g
( dead node). Simply we can insert the new node if the right link of the nod¢ =

ALGORITHEM: BST - insert (item) For example use the following diagrafl

step-1: start

step-2: ptr=root, flag=false

step-3:while (ptr != null) and (flag=flase) do i
case: ( item<ptr.data) 13| 2 |14

ptrl = ptr; l 02
ptr = ptr.Lchild; 101 .
case:( item>ptr.data) N (1 |N 16[4 |10
ptrl = ptr; 103
ptr = ptr.rchild; 104
case: ( il')]:.gdit?r:el-tem) N3 IN lﬁ 5 |N
print “ jtem already exist”; 105 106
_ Exist;
~ end cases
-¢nd while
step-4: if (ptr=null) then
{
new= GET NODE (NODE);
new.data = item;
new.Lchild =null;
new.rchild = null;

step-5: if ( ptr. data < item ) then
ptrl.rchild = new;
else
* ptrl.Lchild = new;
end if
step-6: stop

Deleating a node: -

Delete a node from the binary search tree is called as deletion.suppose ‘T’ is a
binary search tree and item is the information has to be deleated from ‘T . suppose ‘N’ be
the node which contains the information item. the deletion is possible in two.
cases:
case 1: ‘N’ is the leave node ( or ) leaf node.
case 2:*N’ has exactly one node
Examples:
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casel

Before deletion After deletion

(5) (s
g ®» & ®
| (&) @)@
. o OLR

P

66d6bbbbisbhbi,

- 5

o

? . In the above case, ‘27" is deleted from tree by simply setting the address of 27 in the
E‘ parent node of 27 by NULL.

; P

E cas¢2: Before deletion After deletion
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N~ In the above case 45 is deleted from ‘T’ by simply replacing the address of ‘N’ in parent
:ag of *45” by the address of only child of 45
‘ Algorithem: BST-delete ( item)
e step-1: start _
& - ' step-2: ptr = root, flag = false,
~ step-3: while ( ptr != Null) and ( flag= false ) do
i". case: (item<ptr.data)
parent = ptr;

{ ptr= ptr.Lchild;
r‘ case: (item > ptr, data )

; parent = ptr;

. ptr = ptr. rchild;
- case:( item = ptr. data)
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flag =true;
End case;
End while;

step -4 if ( flag = flase ) then
print ¢
Exist
Exist if

step -5 if ( ptr.Lchild = Null

item does not Exist : no deletion”:
>

case =] ) and ( ptr.rchild = Null) then

else
case =2
‘ End if
Step-6; if ( case = 1) then

if ( parent.Lchild = ptr) then
parent.Lchild = Null;

else
parent.rchild = Null;
end if

~feturn (node ptr):
end if ;

step-7: if ( case =2 ) then

if ( parent . Lchild = ptr )then
{
if ( parent .Lchild = Null ) then
parent . Lchild = ptr. r child;
else '
parent.Lchild = ptr.Lchild;
} g
else
{

if ( parent . r child = ptr ) then

{ if ( ptr.Lchild = Null) then
parent . rchild = ptr. rchild;

else
parent . rchild = ptr. Lchild;
3}
return ( node ptr);
}
step - 8 stop

Applications of binary search tree:

1. It stores data in hierachical manner .
Eg; file system

2.storing data naturally.

12

3.It is very easy to search a particular data in binary tree.
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Explain Threaded Binary trees ?

memory waste in computer.

In a binary tree more than 50% link fileds are with null values so, there is lot of

A clever way to utilise this null fields has been deviced by perlis and thornton. their
idea is to store addresses of some nodes in unused link fileds. these extra addresses are
called threads and the tree is known as threaded binary tree. In threded binary tree contains
link to it’s child or thread to some other node in the tree.

Representation of threaded binary tree:

A ———
101
I
. B N C N
102 103
D
104
E|N N| | N
, - o0 106
. ’ N| G|N
107

1) In order threading
2) preorder threading
3) post order threading
In order threading :-

Pre order threading:-

threading.
Post order threading:-

threading.

For representing threaded binary tree, first decide to which node a thread should
point. There are three ways to threaded a binary tree. They are: '

The threaded binary tree corresponds to in order transversal is called as inorder
threading.For above tree, inorder traversal is B,A,GE,D,F,C.

The threaded binary tree corresponds to pre order traversal is called as pre order

Threaded binary tree corresponds to post order traversal is called as post order

The following figure shows an empty inorder threaded binary tree.

\
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; . ; ) . = ader node.
The following diagram shows inorder threading of a binary tree W ith a header
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The above figure shows inorder threading of a binary tree.In the above figure links
are represented by solid lines where as threads are represented by dotted lines ( or ) dashed
lines.

The inorder traversal of a above binary tree is B,A,GE,D,F,C _

In order transversal of a binary tree, no left thread is possible for first node ( B )and
no right thread is possible for last node ( C).

To maintain the uniformity of setting of threads, to maintain a
dummy node, this dummy node is called as header node. whose left link fileds is used to
store the address of root node and the right link filed points to it self. Data content of header
node is null and this node can be considered as the inorder predessor and successor of the
first and last node respectively.

In representation of threaded binary tree, there is a problem of difference between a
link and a thread.To do this, a simpleriode structure having LCHILD (or) RCHILD is not

sufficient. it requires to extra fileds called ‘LTAG’ and ‘RTAG’. The follwing diagram shows
~ node structure in a threaded binary tree.

LCHILD LTAG | DATA | RTAG | RCHILD

The ﬁelds LTAG and RTAG will store either 0 or 1. The follwing assignment will be
issumed to dlstmgush between a link and a thread

T darates’ Sk oy
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LTAG =0 address of LCHILD is thread
LTAG = 1 address of LCHILD is link
RTAG =1 address of RCHILD is thread
RTAG =0 address of RCHILD is link

Advantages of thereaded binary trees :-

1) In threaded binary tree any node can be accessable from any other node. Threads are
move to upward where as links are downward. Thus in a threaded binary tree, one can
move either directions.

2) The second advantage is, we can efficiently determined predessor and successor nodes
storing from any node. In case of unthreaded binary tree, this task is more time consuming

. and different

Disadvantage:-
Insertions and deletions into threaded binary tree takes lot of time and it occupies

more memaory.

Wriite a short notes on Heap Tree:
A Heap tree is a specialized tree based data structure that satisfied the heap property
If B,isa child node of A then value(A) is greater than or equal to value( B).This implies that
an e:lcrncm with the greatest value is always in the root node, and so such a heap is called a
Max-heap.The reverse is true for a Min-heap.
Example for Max-heap:-15,19,10,7,17,6
To construction of Max-Heap following the bellow steps

1.Create new node in the heap. Max-Heap tree Ex; 15,19,10,7,17,6
2.Assign value to the node Step 1:

3.Compare value of child node with  gier . qj@
the parent node.
4.If parent < child then swap them
Step 3:
5.Repeat step 3 & 4 until heap a5 @
property helds.
Step 4: 19
' (B )

Step5:
@

Step 6

D BE®
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Example for Min-heap:-15,19,10,7,17,6
To construction of Min-Heap following the bellow steps

1.Create new node in the heap.

2.Assign value to the node

3.Compare value of child node with the parent node.
4.If parent > child then swap them

S.Repeat step 3 & 4 until heap property helds.
MIN-Heap Ex; 15,19,10,7,17,6
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