Name :	- A
Roll No. :	Carlos & Carriely and Carlos
Invigilator's Signature :	

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13 2012 SIGNALS & SYSTEMS

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) The fundamental period of the sequence

$$x [n] = \sin\left(\frac{2\pi n}{3}\right)$$
 is

a) 1 b) 2

c) 3 d) 6.

ii) A signal is a power signal if

- a) $E < \infty$, P = 0 b) $P < \infty$, E = 0
- c) $P < \infty$, $E = \infty$ d) $P = \infty$, E = 0

3204(N)

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

- iii) If a signal x (t) has half wave symmetry, then the Fourier series will have only
 - a) Odd harmonics of sine terms
 - b) Constant term and even harmonics of cosine terms
 - c) Even harmonics of sine and cosine terms
 - d) Odd harmonics of sine and cosine terms.
- iv) The system described by y [n] = nx [n] is
 - a) Linear, time varying and stable
 - b) Non-Linear, time invariant and unstable
 - c) Non-linear, time varying and stable
 - d) Linear, time varying and unstable.
- v) A signal is given by the equation $\left(\frac{1}{3}\right)^n u$ (*n*). The signal is
 - a) an energy signal
 - b) a power signal
 - c) both energy and power signal
 - d) netither energy nor power signal.

3204(N)

vi) The signal x (n) =
$$e^{j\frac{3}{5}} (n + \frac{1}{2})$$

- a) is periodic with period $\frac{3}{5}$
- b) is periodic with period $\frac{1}{2}$
- c) is non-periodic
- d) none of these.
- vii) The Fourier series coefficient b_n contains
 - a) only cosine terms
 - b) only sine terms
 - c) only dc and cosine terms
 - d) only dc and sine terms.
- viii) The z-transform of a sequence x (n) is X (z). The z-transform of nx (n) is
 - a) $z \frac{d}{dx} X(z)$ b) $\frac{d}{dz} X(z)$ c) $-z \frac{d}{dz} X(z)$ d) None of these.
- ix) The minimum sampling frequency associated with a signal of bandwidth B Hz is
 - a) 2B Hz b) 4B Hz
 - c) B Hz d) 3B Hz.

3204(N)

3

CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13

- x) The ROC of the signal $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(-n-1)$ is
 - a) $\frac{1}{3} < |z| < \frac{1}{2}$ b) $\frac{1}{2} < |z| < \frac{1}{3}$ c) $\frac{1}{3} = |z| < \frac{1}{2}$
 - d) The *z*-transform of the signal does not exist.
- xi) The *z* transform of δ (*n m*) is
 - a) z^{-m} b) z^{-m-n} c) z^{n-m} d) z^{m-n} .

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

Utech

2. Define energy and power signal.

Calculate the power of signal sequence given by,

$$x[n] = e^{j(\frac{\pi n}{2} + \frac{\pi}{4})} \qquad 2 + 3$$

3. Find the system function and impulse response of the system described by the difference equation

$$Y(n) = X(n) + 5X(n-2) - 3X(n-3) + X(n-4).$$

3204(N)

- CS/B.TECH(ECE-N)/SEM-3/EC-303/2012-13 Find the compact trigonometric Fourier series for the exponential $e^{-t/2}$ over the interval $0 \le t \le \pi$.
- 5. Find the Fourier transform of the signal $e^{-a|t|}$ for a > 0.
- 6. Find the Laplace transform of the signal $\frac{t^{n-1}}{(n-1)!}e^{-at}$.
- 7. Determine the *z*-transform of the following sequence and find its ROC :

$$x(n) = \{2, -1, 3, 2, 1 \uparrow , 0, 2, 3, -1\}$$

GROUP – **C**

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- a) Write various forms of Fourier series representation for continuous time periodic signal.
 - b) How do we get the frequency representation of aperiodic signal ?
 - c) State the condition required for existence of Fourier Transform.
 - d) State and prove Parseval's theorem for energy signal.
 - e) State the F.T. of the signal $x (t) = e^{-at} u (t)$. Hence find out F.T. of the signal

 $x(t-t_0) = e^{-(t-t_0)}$. $u(t-t_0)$. 3+2+2+3+5

3204(N)

4.

- 9. a) What is the relationship between D Z-transform?
 - b) State and prove convolution theorem of Z-transform.

and

c) Find *z*-transform and ROC of

 $x(n) = [3(3)^n - 4(2)^n] u(n).$

- d) Find the inverse *z*-transform using Residue method $X(z) = (1 - \frac{1}{4}z^{-1}) / (1 - \frac{1}{9}z^{-1}), \text{ ROC} : |z| > 1/3.$ 2 + 3 + 5 + 5
- 10. a) State and prove time convolution theorem for CTFT.
 - b) Find out Fourier Transform of
 - i) $\cos \omega_0 t$
 - ii) $e^{-at} u(t)$.
 - c) The input and the output of a causal LTI system are related by differential equation

$$\frac{d^{2}y(t)}{dt^{2}} + 6 \frac{dy(t)}{dt} + 8y(t) = 2 x(t)$$

Find the impulse response of the system. 5 + 5 + 5

- 11. a) State and prove Sampling theorem.
 - b) What is aliasing effect ? How can we overcome from this effect ?

WEST BENGAL UNVERSITY OF TECHNOLOGY

c) Two signals $x_1(t)$ and $x_2(t)$ are multiplied together and the product is sampled by a periodic impulse train $p(t) = \sum_{n=1}^{\infty} b(t - nT)$ If the signal $x_n(t)$ and $x_n(t)$

$$p(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$
. If the signal $x_1(t)$ and $x_2(t)$

are band limited to Ω $_1$ and Ω $_2$ respectively. That is

$$X_1$$
 ($j\Omega$) = 0 for $|\Omega| > \Omega_1$

$$X_2$$
 ($j\Omega$) = 0 for $|\Omega| > \Omega_2$

Determine the maximum sampling interval T that recovers the signal form its sampling. 5 + 5 + 5

12. Write short note on any *three* of the following : 5 + 5 + 5

- a) Probability Density Function
- b) Stability of a system
- c) Power Spectral Density and Energy Spectral Density
- d) Significance of ROC.