	UNVERTITY OF TECHNOLOGY
	000
	Utech
Name :	Å
Roll No. :	(a dama of Excellent
Invigilator's Signature :	

CS/B.TECH(CSE/IT)NEW/SEM-4/CS-402/2012

2012

FORMAL LANGUAGE & AUTOMATA THEORY

Time Allotted : 3 Hours

Full Marks : 70

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

GROUP – A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following :

 $10 \times 1 = 10$

- i) The basic limitation of FSM is that
 - a) it can't remember arbitrary large amount of information
 - b) it sometimes recognize grammar that is not regular
 - c) it sometimes fails to recognize grammar that is regular
 - d) all of these.

[Turn over

- ii) Choose the correct statements :
 - a) Moore & Mealy machine are FSM with output capabilities
 - b) Any given Moore machine has an equivalent Mealy machine
 - c) Any given Mealy machine has an equivalent Moore machine
 - d) Moore machine is not an FSM.
- iii) The intersection of CFL & regular language
 - a) need not be regular b) need not be CF
 - c) is always regular d) none of these.
- iv) Palindromes can't be recognized by any FSM because
 - a) an FSM can't be remember arbitrary large amount of information
 - b) an FSM can't deterministically fix the mid point
 - c) FSM can't find whether 2nd half of the string machines the 1st half or not
 - d) None of these.
- v) Can a DFA simulate NFA ?
 - a) no b) yes
 - c) some times d) depends on DFA.

c) both (a) and (b) d) none of these.

4358

[Turn over

CS/B.TECH(CSE/IT)NEW/SEM-4/CS-402/2012

GROUP - B

 $3 \times 5 = 15$

2

(Short Answer Type Questions)

Answer any three of the following.

- 2. Show that $L = \{ O^n | n > 1 \}$ is not regular.
- 3. Write the CFG for the following language

 $L = \{ 0^i 1^j 2^k | I = jj = k \}$

4. Design a PDA which accepts the language

 $L = \{ w \in (a,b)^* | w \text{ has equal no. of } a \& b \}.$

- 5. a) Give DFA which reads strings from $\{a,b\}$ and with aaa. 3
 - b) Construct a DFA equivalent to M = { $\{q_0, q, \}, \{0, 1\}, \delta q_0, \{q_0\}\}, \delta$ is given by the state table.

State /	0	1
q ₀	q ₀	q ₁
q1	q_1	q ₀ , q1

- 6. Find a GNF grammar equivalent to the following CFG :
 - $\begin{array}{l} A_1 \rightarrow A_2 \, A_3 \\ A_2 \rightarrow A_3 \, A_1 \, | \, b \\ A_3 \rightarrow A_1 \, A_2 \, | \, a \end{array}$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) Construct a *DFA* diagram to the *NFA* given below. 6

- c) What are Kleene Closure and Positive Closure ? Give example for both.
 2 + 1
- 8. a) What are distinguishable and Indistinguishable state ? 3
 - b) Use Myhill Nerode Theorem to minimize the following finite automata. 12

5

[Turn over

9. a) Give the Regular Expression for the DFA using arden Theorem. 5

b) What is Griebach Normal Form (GNF) for Context Free grammar ?

Convert the following grammar into GNF

$$S \rightarrow ABb/a$$

 $A \rightarrow aaA/B$
 $B \rightarrow bAb$ 1+4

- c) Using Pumping Lemma show that $L = \{a^n b^n : n \ge 0\}$ is not regular. 5
- 10. a) Construct a *NFA* with ε or λ transition for

$$r = (11 + 0)^* (00 + 1)^*$$

- b) What is PDA ? 5
- c) Construct PDA for $L = \{ww^R : w \text{ belongs to } (0, 1)^*\}$ 5

CS/B.TECH(CSE/IT)NEW/SEM-4

11.

PS	NS, Z			
	I_1	I_2	I ₃	
Α	С,О	<i>E</i> ,1		
В	С,О	<i>E</i> ,		
С	В,	С,О	A,	
D	B,O	С,	<i>E</i> ,	
E		E	A,	

For the incompletely specified machine shown above find the minimum state reduced machine containing the original one. 8

PS	NS,Z		
	x = 0	x = 1	
A	<i>B</i> , 1	Н, 1	
В	<i>F</i> , 1	<i>D</i> , 1	
С	<i>D</i> , 0	<i>E</i> , 1	
D	<i>C</i> , 0	<i>F</i> , 1	
E	D, 1	<i>C</i> , 1	
F	<i>C</i> , 1	<i>C</i> , 1	
G	<i>C</i> , 1	<i>D</i> , 1	
Н	<i>C</i> , 0	A, 1	

Using this table

a)	Find the equivalence partition.	3
b)	Find the standard form of the correspondi	ing
	reduced machine.	3
c)	What is the minimum length sequence the	nat
	distinguishes state A from state B?	1

2012

CS-40