B.Tech I Year Examinations, November/December - 2013 ENGINEERING MECHANICS

(Common to CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM, PTE, CEE, MSNT, ACE)
Time: 3 hours
Max. Marks: 75

Answer any five questions
 All questions carry equal marks

1.a) Two smooth spheres P and Q each of radius 25 cms and weighing 1000 N , rest in a horizontal channel having vertical walls as shown in figure 1. If the distance between the walls is 90 cms , make calculations for the pressure exerted on the wall and floor at points of contact A, B and C.

Figure: 1
b) A uniform rod $A B$ of length 300 mm and weight W rests inside a hemispherical bowl of radius 100 mm as shown in figure 2. Neglecting friction, determine the angle θ corresponding to equilibrium.

Figure: 2
2. \quad Three similar right circular cylinders A, B and C of weights W each are arranged on smooth inclined planes as shown in figure 3. Determine the minimum value of θ that will prevent the arrangement from collapsing.

Figure: 3
3. Determine the co-ordinates of center of gravity of the area OAB as shown in figure 4, if the curve $O B$ represents the equation of a parabola, given by $y=k x^{2}$.

Figure: 4
4.a) Define and explain product of inertia.
b) Determine the mass moment of inertia of a regular solid cone of base diameter D and height H with a mass density of ρ about a diametral axis on the base.
5. Find out the forces in all the members of the truss using method of joints as shown in figure 5 .

Figure: 5
6. Three marks A, B and C at a distance of 100 m each are made along a straight road. A car starting from rest and with uniform acceleration passes the mark A and takes 10 seconds to reach B and further 8 seconds to reach the mark C. Calculate:
a) The magnitude of the acceleration of the car
b) The velocity of the car at A
c) The velocity of car at B and
d) The distance of the mark A from the starting point.
7. A car of weight 9810 N accelerates from rest to a speed of $45 \mathrm{~km} / \mathrm{hr}$ in a distance of 50 m against a resistance of 100 N . Find the average driving force acting on the car. Using the average force, find the greatest power developed by the engine.[15]
8. A beam $A B C D E, 10 \mathrm{~m}$ long, is hinged at A and freely supported at B and D. $\mathrm{AB}=2 \mathrm{~m} ; B D=6 \mathrm{~m}$; the overhang $D E=2 \mathrm{~m}$. There is a hinge at C, midway between B and D. The loading consists of a point-load of 15 kN at the free end $E, 20 \mathrm{kN}$ at the middle of $B C$ and 40 kN at the middle of $C D$. Evaluate the reactions at the supports.

