Name :	
Roll No. :	A Annual O'X second of part Section
Invigilator's Signature :	

CS/B.TECH(NEW)(APM/CSE/IT/AUE/CHE/BT/ME /PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2012

2012

NUMERICAL METHODS

Time Allotted : 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

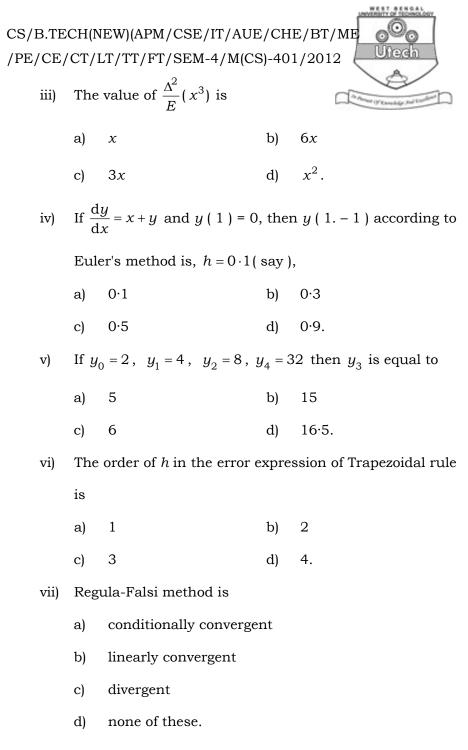
GROUP – A

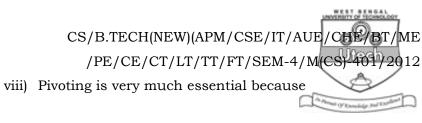
(Multiple Choice Type Questions)

1. Choose the correct alternatives for any *ten* of the following :

 $10 \times 1 = 10$

i) If $\frac{5}{3}$ is approximated to 1.6667, then absolute error is

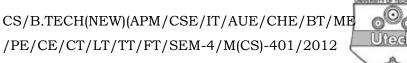

- a) 0.000033 b) 0.000043
- c) 0.000034 d) none of these.


ii) If
$$f(x) = \frac{1}{x^2}$$
 then the divided difference $f(a, b)$ is

a)
$$\frac{(a + b)}{(ab)^2}$$
 b) $\frac{(a - b)}{(ab)^2}$

c)
$$\frac{1}{a^2} - \frac{1}{b^2}$$
 d) $\frac{1}{a^2 - b^2}$.

[Turn over



- a) determinant of the coefficient matrix should be grater than zero
- b) pivot element should not have very large value compared to the elements of the matrix
- c) it reduces the possibility of division by zero
- d) change of convergence is higher.
- ix) Which of the following is true ?
 - a) $\Delta^n x^n = (n+1)!$ b) $\Delta^n x^n = n!$
 - c) $\Delta^n x^n = 0$ d) $\Delta^n x^n = n$.
- x) An $n \times n$ matrix A is said to be diagonally dominant if

c)
$$\left|a_{ii}\right| > \sum_{\substack{j=1\\i\neq j}}^{n} \left|a_{ij}\right|$$
 d) $\left|a_{ii}\right| < \sum_{\substack{j=1\\i\neq j}}^{n} \left|a_{ij}\right|$

3

[Turn over

xi) The condition of convergence of Newton-Raphson's method is

- a) $|f(x).f'(x)| < {f''(x)}^2$
- b) $|f(x).f''(x)| < {f'(x)}^2$
- c) $|f(x).f'(x)| > {f''(x)}^2$
- d) $|f(x).f''(x)| > {f'(x)}^2$.
- xii) For $\frac{dy}{dx} = xy$ and y(0) = 2, the value of k_2 according to

Runge-Kutta method of 2nd order is (h = 0.2)

a) 0.1 b) 0.01

c) 0·4 d)

GROUP – B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

0.04.

2. Given $u_0 + u_6 = 3$, $u_1 + u_5 = 5$, $u_2 + u_4 = 7$. Find u_3 , where v_x

is a function of x.

3. Using the following table find $\frac{dy}{dx}$ at x = 0 & 1.5.

x	:	0	1	2	3
y	:	1	2	11	34

CS/B.TECH(NEW)(APM/CSE/IT/AUE/CHE/BT/ME /PE/CE/CT/LT/TT/FT/SEM-4/M(CS)-401/2012 Solve the following system of equations using Gaussian

A Parent (V Family Ind)

elimination method :

4.

$$x + y + z = 9$$

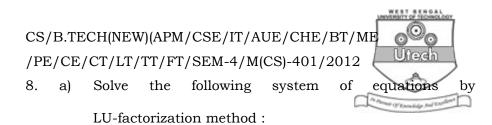
$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

- 5. Find the value of $(19)^{\frac{1}{3}}$ correct to four decimal points by Newton-Raphson method.
- Find the cubic polynomial by Lagrange's interpolation formula which takes the following value :

x	:	0	4	5	8
f(x	:):	1	2	1	10

GROUP – C


(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Find a root of the equation $x^4 x 10 = 0$ that lies between 1 & 2 using Newton-Raphson method correct to 3 places of decimal.
 - b) Solve the system of equations

x + y + 54z = 11027x + 6y - z = 85 6x + 15y + 2z = 72

by Gauss-Seidel method. 7 + 8

3x + 2y + 7z = 42x + 3y + z = 53x + 4y + z = 7

b) Using Runge-Kutta method of order 4, final y (0.2)given that $\frac{dy}{dx} = 3e^x + 2y$, y (0) = 0, taking h = 0.1.

7 + 8

9. a) Find the root of the equation $3x - \cos x - 1 = 0$ by Regula-falsi method, correct to three decimal places.

b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \, dx$$
 by using (i) Trapezoidal and (ii) Simpson's $\frac{1}{3}$ rd rule, where $h = 15^{\circ}$. $7 + 8$

10. a) Compute
$$y = (1 \cdot 4)$$
 by Milne's predictor & corrector's
method from $\frac{dy}{dx} = \frac{1}{2}(x+y)$ where $y(1) = 3 \cdot 595$,
 $y(1 \cdot 1) = 3 \cdot 833$, $y(1 \cdot 2) = 4 \cdot 088$, $y(1 \cdot 3) = 4 \cdot 362$.

b) Derive Newton's divided difference formula.

- b) Why implicit method is preferred over explicit method though it requires more computations ?
- c) Show that the rate of convergence in Newton-Raphson method is quadratic.
 8 + 3 + 4

7

[Turn over