

Time Allotted : 3 Hours
Full Marks : 70

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

1. Choose the correct alternatives for the following : $10 \times 1=10$
i) Unit of thermal diffusivity is
a) $\mathrm{m} / \mathrm{s}^{2}$
b) $\mathrm{m}^{2} / \mathrm{s}^{2}$
c) $\mathrm{m}^{2} / \mathrm{s}$
d) $\mathrm{m}^{3} / \mathrm{s}^{2}$.
ii) Thermal conductivity is highest for
a) Cu
b) Ag
c) Steel
d) Al .
iii) The temperature variation in Lumped heat capacity analysis is
a) linear with time
b) quadratic with time
c) cubic with time
d) exponential with time.
iv) Characteristic length in Biot number is theratia of
a) volume of solid to its surface area \qquad
b) surface area to perimeter of the solid
c) perimeter to surface area of solid
d) none of these.
v) Effectiveness of a fin of uniform cross-section will be high if
a) $\quad k$ is less
b) $\quad P$ is less
c) $\quad h$ is less
d) A is large.
vi) Expression for the critical radius of insulation for sphere is
a) $\quad r_{c}=\mathrm{k} / \mathrm{h}$
b) $\quad r_{c}=2 \mathrm{k} / \mathrm{h}$
c) $\quad r_{c}=3 \mathrm{k} / \mathrm{h}$
d) $\quad r_{c}=4 \mathrm{k} / \mathrm{h}$.
vii) For free convection, Nusselt number is a function of
a) Prandtl and Grashoff numbers
b) Reynolds and Grashoff numbers
c) Grashoff number only
d) Reynolds and Prandtl numbers.
viii) Thermal conductivity of pure metal with rise in temperature
a) Decreases
b) Increases
c) Remains same
d) None of these.
ix) LMTD of counter flow heat exchanger as compared to parallel flow heat exchanger for a given heat transfer will be
a) More
b) Same
c) Less
d) Unpredictable.

x) The velocity profile for fully developed laminaref in a tube is
a) Linear
b) Exponential
c) Hyperbolic
d) Parabolic.
GROUP - B
(Short Answer Type Questions)
Answer any three of the following.
2. Derive one dimensional heat conduction equation in Cartesian co-ordinates.
3. (i) Define efficiency and effectiveness of a fin and show expressions for these for an infinitely long fin. How effectiveness of a fin can be increased?
(ii) What is thermal resistance of a fin ? Write down expression for thermal resistance of an infinitely long fin.
4. a) Define solid angle and explain Lambert's cosine law. Explain a perfect grey body.
b) A grey body has an emissivity of 0.35 and is at a temperature of 550 K . If the body is opaque, calculate its reflectivity for a black body radiation coming from a 550 K source.

CS/B.Tech(ME)(N)/PWE(N)/PE(N)/SEM-5/ME-502/2012-13@
5. In forced convection through a pipe explain the effect of the following on heat transfer coefficient, when other things remain unchanged :
(i) The fluid velocity is doubled
(ii) The diameter of the pipe is doubled
(iii) The thermal conductivity is doubled.
6. Sketch the boundary layer development of a flow over a flat plate and explain the significance of the boundary layer.

GROUP - C

(Long Answer Type Questions)
Answer any three of the following. $3 \times 15=45$
7. a) What is the physical significance of thermal diffusivity of a metal ?
b) Consider a plane composite wall that is composed of two materials whose conductivities are $K_{1}=0 \cdot 1 \mathrm{~W} / \mathrm{m} \mathrm{K}$ and $K_{2}=0.04 \mathrm{~W} / \mathrm{m} \mathrm{K}$ and thickness $L_{1}=1 \mathrm{~cm}$ and $L_{2}=2 \mathrm{~cm}$. The contact resistance at the interface between the two materials is known to be $0.3 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$. The material 1 adjoins a fluid at $200^{\circ} \mathrm{C}$ for which $h=10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and material 2 adjoins a fluid at $40^{\circ} \mathrm{C}$ for which $h=20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Find :
(i) The rate of heat transfer through the composite wall
(ii) What is the temperature drop at the interface of two materials ?
c) A plane wall is made by fire clay brick. The wall thickness $L=300 \mathrm{~mm}$, the temperature of wall surface $T_{1}=1550^{\circ} \mathrm{C}$ and $T_{2}=50^{\circ} \mathrm{C}$. Thermal conductivity of brick $\mathrm{K}=0.96(1+0 \cdot 0008 T) \mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$. Calculate and represent graphically the temperature distribution through wall. $2+6+7$
8. a) Derive the expression of rate of heat transfer between the cold and hot fluids in terms of overall heat transfer coefficient, heat exchanger area and LMDT for a parallel flow heat transfer.
b) What advantage does the effectiveness of NTU method have over the LMDT method?
c) Hot oil with capacity rate of $2500 \mathrm{~W} / \mathrm{K}$ flows through a double pipe heat exchanger. It enters at $360^{\circ} \mathrm{C}$ and leaves at $300^{\circ} \mathrm{C}$. Cold fluid enters at $30^{\circ} \mathrm{C}$ and leaves at $200^{\circ} \mathrm{C}$. If the overall heat transfer coefficient is $800 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, determine the heat exchanger area required for
(i) parallel flow
(ii) counter flow.

$$
6+3+6
$$

CS/B.Tech(ME)(N)/PWE(N)/PE(N)/SEM-5/ME-502/2012-13
9. a) Using a linear velocity profile $\frac{u}{u_{\infty}}=\frac{y}{\delta}$ For flow over flat plate, obtain an expression for boundary layer thickness as a function of x.
b) Air at $20^{\circ} \mathrm{C}$ and at atmospheric pressure flows over a flat plate at a velocity of $1.8 \mathrm{~m} / \mathrm{sec}$. If the length of the plate is 2.2 m and is maintained at $100^{\circ} \mathrm{C}$, Calculate using exact method (Blasius solution)
(i) thickness of hydrodynamic boundary layer
(ii) average heat transfer coefficient
(iii) heat transfer rate from the plate.

Take properties of air as $: \rho=1.06 \mathrm{~kg} / \mathrm{m}^{3}$, $K=0.02894 \mathrm{~W} / \mathrm{m} . \mathrm{K}, \quad v=18.97 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
$C_{p}=1 \cdot 005 \mathrm{~kJ} / \mathrm{kg}, P_{r}=0.696 . \quad 7+8$
10. a) Show that total heat transfer from a finned wall is given by $Q=h \theta_{0}\left\{A-\left(1-\eta_{f}\right) A_{f}\right\}$ where $A=$ total area of fin and unfined surface, $A_{f}=$ area of the finned surface. $\eta_{f}=$ fin efficiency and $\theta_{0}=T_{0}-T_{\infty}$.
b) One end of a long rod is inserted into a furnace while the other projects into ambient air. Under steady state the temperature of the rod is measured at two points 75 mm apart and found to be $125^{\circ} \mathrm{C}$ and $88.5^{\circ} \mathrm{C}$, respectively, while the ambient temperature is $20^{\circ} \mathrm{C}$. If the rod is 25 mm in diameter and h is $23 \cdot 36 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ find the thermal conductivity of the rod material.

11. a) State and prove the Kirchhoff's law of radiation

CH2mbuntin
b) Two parallel, infinite gray surfaces are maintained at temperatures of $127^{\circ} \mathrm{C}$ and $227^{\circ} \mathrm{C}$ respectively. If the temperature of the hot surface is increased to $327^{\circ} \mathrm{C}$ by what factor is the net radiation exchange per unit area increased ? Assume the emissivities of cooler and hotter surfaces to be 0.9 and 0.7 respectively. $7+8$

