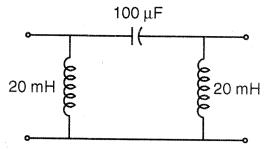
Code No.: 3279

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) II Sem.(Main) Examination, May/June 2011 Networks & Transmission Lines


Tim	ne : 3 Hours] [Max. Marks	s:75
Note: Answer all questions from Part A, answer any five questions from Part B.		
	PART – A (25 M	arks)
1.	Show that for any two port bilateral network AD-BC = 1.	3 A R
2.	Define z-parameters of a typical four terminal network	2
3.	How the value of m is decided in m-derived filters? Explain.	3
4.	What is reflection coefficient and VSWR for a matched load?	2
5.	Design symmetrical T attenuator for R $_0$ = 600 Ω & α = 20 dB.	3
6.	What are the limitations of constant K filters?	2
7.	Why short circuit stubs are preferred over open circuit stubs?	2
8.	Show that $\lambda/4$ transformer acts as like impedance inverter.	3
9.	What are the special features of the telephone cable?	2
10.	On a transmission line terminated in a load VSWR is measured as	2'.
	What % of power will be reflected back?	3
	PART – B (50 Ma	ırks)
11.	(a) For a two port network shown in fig. (1) calculate the value of Y ₁₂ .	7
	$1 \circ \frac{3 \text{ k}\Omega}{3 \text{ k}\Omega} \stackrel{1\Omega}{\longrightarrow} 2$	
	2/3 F 2 F T \$1/6 Ω	
	1′• 2′	
	(b) Verify whether network of fig. (1) is reciprocal or not.	3

12. (a) Design L- type matching section to match 50 Ω to 400 Ω .

6

(b) Find characteristic impedance of the π section shown.

4

13. Design composite T section low pass filter with the specifications given

$$\rm R_o = 600~\Omega~F_c {=} 1000~kHz~f_\infty {=}~1200~kHz$$
 .

10

- 14. (a) Differentiate between various methods of network synthesis.
- 4

6

(b) Synthesize the given real impedance function in caller forms:

$$z(s) = \frac{(s+1)(s+2)}{(s+3)}$$

- 15. (a) Show that for a short circuit line of length 'l' with propagation constant β , input impedance is $Z_{sc} = jz_o tan \beta l$. where z_o is characteristic impedance.
 - (b) Derive relationship between VSWR and reflection co-efficient.

4

- 16. (a) Transmission line of 50 Ω , length 0.2 λ is terminated in $(100 + j200)\Omega$ load. Find input impedance using Smith chart. What is VSWR on line?
 - sing
 - (b) Give design equations and steps for single stub matching using Smith chart.
- 17. Write short notes on:

10

5

- (a) Loading of a line
- (b) Notch filter
- (c) Phase Equalizer